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Summary. We present a method for learning sparse representations shared
across multiple tasks. This method is a generalization of the well-known single-
task 1-norm regularization. It is based on a novel non-convex regularizer which
controls the number of learned features common across the tasks. We prove
that the method is equivalent to solving a convex optimization problem for
which there is an iterative algorithm which converges to an optimal solution.
The algorithm has a simple interpretation: it alternately performs a super-
vised and an unsupervised step, where in the former step it learns task-specific
functions and in the latter step it learns common-across-tasks sparse repre-
sentations for these functions. We also provide an extension of the algorithm
which learns sparse nonlinear representations using kernels. We report exper-
iments on simulated and real data sets which demonstrate that the proposed
method can both improve the performance relative to learning each task in-
dependently and lead to a few learned features common across related tasks.
Our algorithm can also be used, as a special case, to simply select — not learn
— a few common variables across the tasks®.

Key words: Collaborative Filtering, Inductive Transfer, Kernels, Multi-
Task Learning, Regularization, Transfer Learning, Vector-Valued Func-
tions.

3 This is a longer version of the conference paper [4]. It includes new theoretical
and experimental results.
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1 Introduction

We study the problem of learning data representations that are com-
mon across multiple related supervised learning tasks. This is a problem
of interest in many research areas. For example, in computer vision the
problem of detecting a specific object in images is treated as a sin-
gle supervised learning task. Images of different objects may share a
number of features that are different from the pixel representation of
images [28, 41, 43]. In modeling users/consumers’ preferences [1, 33],
there may be common product features (e.g., for cars, books, web-
pages, consumer electronics, etc) that are considered to be important
by a number of people (we consider modeling an individual’s prefer-
ences to be a single supervised learning task). These features may be
different from standard, possibly many, product attributes (e.g., size,
color, price) considered a priori, much like features used for percep-
tual maps, a technique for visualizing peoples’ perception of products
[1]. Learning common sparse representations across multiple tasks or
datasets may also be of interest for example for data compression.

While the problem of learning (or selecting) sparse representations
has been extensively studied either for single-task supervised learning
(e.g., using 1-norm regularization) or for unsupervised learning (e.g.,
using principal component analysis (PCA) or independent component
analysis (ICA)), there has been only limited work [3, 9, 31, 48] in the
multi-task supervised learning setting. In this paper, we present a novel
method for learning sparse representations common across many su-
pervised learning tasks. In particular, we develop a novel non-convex
multi-task generalization of the 1-norm regularization known to provide
sparse variable selection in the single-task case [20, 27, 40]. Our method
learns a few features common across the tasks using a novel regularizer
which both couples the tasks and enforces sparsity. These features are
orthogonal functions in a prescribed reproducing kernel Hilbert space.
The number of common features learned is controlled, as we empirically
show, by a regularization parameter, much like sparsity is controlled in
the case of single-task 1-norm regularization. Moreover, the method
can be used, as a special case, for variable selection. We call “learning
features” to be the estimation of new features which are functions of
the input variables, like the features learned in the unsupervised setting
using methods such as PCA. We call “selecting variables” to be simply
the selection of some of the input variables.

Although the novel regularized problem is non-convex, a first key
result of this paper is that it is equivalent to another optimization prob-
lem which is convex. To solve the latter we use an iterative algorithm
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which is similar to the one developed in [22]. The algorithm simulta-
neously learns both the features and the task functions through two
alternating steps. The first step consists in independently learning the
parameters of the tasks’ regression or classification functions. The sec-
ond step consists in learning, in an unsupervised way, a low-dimensional
representation for these task parameters. A second key result of this
paper is that we prove that this alternating algorithm converges to an
optimal solution of the convex and the (equivalent) original non-convex
problem.
Hence the main theoretical contributions of this paper are:

e We develop a novel non-convex multi-task generalization of the well-
known 1-norm single-task regularization that can be used to learn
a few features common across multiple tasks.

e We prove that the proposed non-convex problem is equivalent to
a convex one which can be solved using an iterative alternating
algorithm.

e We prove that this algorithm converges to an optimal solution of
the non-convex problem we initially develop.

e Finally, we develop a novel computationally efficient nonlinear gen-
eralization of the proposed method using kernels.

Furthermore, we present experiments with both simulated (where
we know what the underlying features used in all tasks are) and
real datasets, also using our nonlinear generalization of the proposed
method. The results show that in agreement with previous work
3, 8,9, 10, 19, 21, 31, 37, 38, 43, 46, 47, 48] multi-task learning im-
proves performance relative to single-task learning when the tasks are
related. More importantly, the results confirm that when the tasks are
related in the way we define in this paper, our algorithm learns a small
number of features which are common across the tasks.

The paper is organized as follows. In Section 2, we develop the novel
multi-task regularization method, in the spirit of 1-norm regulariza-
tion for single-task learning. In Section 3, we prove that the proposed
regularization method is equivalent to solving a convex optimization
problem. In Section 4, we present an alternating algorithm and prove
that it converges to an optimal solution. In Section 5 we extend our ap-
proach to learning features which are nonlinear functions of the input
variables, using a kernel function. In Section 6, we report experiments
on simulated and real data sets. Finally, in Section 7, we discuss rela-
tions of our approach with other multi-task learning methods as well
as conclusions and future work.
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2 Learning Sparse Multi-Task Representations

In this section, we present our formulation for multi-task feature learn-
ing. We begin by introducing our notation.

2.1 Notation

We let R be the set of real numbers and R (R, ) the subset of nonneg-

ative (positive) ones. For every n € N, we let N,, := {1,2,...,n}. If

w,u € RY, we define (w,u) := E?Zl w;u;, the standard inner prod-

uct in R?. For every p > 1, we define the p-norm of vector w as

d 1 . .

lwllp :== iy |ws|P)?. In particular, |w|ls = \/(w,w). If AisadxT

matrix we denote by a’ € R” and a; € R? the i-th row and the ¢-th

column of A respectively. For every r,p > 1 we define the (r, p)-norm
. 1

of Aas |Allrp = (X, la[I7)7.

We denote by S? the set of d x d real symmetric matrices, by Si
(S?.) the subset of positive semidefinite (positive definite) ones and
by S% the subset of negative semidefinite ones. If D is a d x d matrix,
we define trace(D) := Zle Dj;i. If w € R%, we denote by Diag(w) or
Diag (wi)le the diagonal matrix having the components of vector w
on the diagonal. If X is an n x ¢ real matrix, range(X ) denotes the set
{z € R" : 2 = Xz, for some z € R?}. Moreover, null(X) denotes the set
{r € RY: X2 =0}. We let O? be the set of d x d orthogonal matrices.
Finally, if D is a d x d matrix we denote by D™ its pseudoinverse. In
particular, if a € R, a* = 1 for a # 0 and a™ = 0 otherwise.

2.2 Problem Formulation

We are given T supervised learning tasks. For every ¢ € Np, the corre-
sponding task is identified by a function f; : R? — R (e.g., a regressor
or margin classifier). For each task, we are given a dataset of m in-
put/output data examples® (241, s1), - -, (Tim, Yem) € R? x R,

We wish to design an algorithm which, based on the data above,
computes all the functions f;, t € Np. We would also like such an
algorithm to be able to uncover particular relationships across the tasks.
Specifically, we study the case that the tasks are related in the sense
that they all share a small set of features. Formally, our hypothesis is
that the functions f; can be represented as

4 For simplicity, we assume that each dataset contains the same number of exam-
ples; however, our discussion below can be straightforwardly extended to the case
that the number of data per task varies.
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N

felz) = aihi(z),  teNg, (1)

=1

where h; : R? - R, i € Ny are the features and a;; € R the regression
parameters.

Our goal is to learn the features h;, the parameters a;; and the
number of features N from the data. For simplicity, we first consider
the case that the features are linear homogeneous functions, that is,
they are of the form h;(z) = (u;,z), where u; € R In Section 5, we
will extend our formulation to the case that the h; are elements of a
reproducing kernel Hilbert space, hence in general nonlinear.

We make only one assumption about the features, namely that the
vectors u; are orthogonal. Hence, we consider only up to d of those
vectors for the linear case. This assumption, which is similar in spirit
to that of unsupervised methods such as PCA, will enable us to develop
a convex learning method in the next section. We leave extensions to
other cases for future research.

Thus, if we denote by U € O the matrix whose columns are the
vectors u;, the task functions can be written as

d
fi(x) = Zait<ui,x> = (at, UTx>.

Our assumption that the tasks share a “small” set of features (IV < d)
means that the matrix A has “many” rows which are identically equal
to zero and, so, the corresponding features (columns of matrix U) will
not be used by any task. Rather than learning the number of features
N directly, we introduce a regularization which favors a small number
of nonzero rows in the matrix A.

Specifically, we introduce the regularization error function

T m
E(AU) = Z Z Ly, (at, UT%ii)) + 7”*’4“3,17 (2)

t=1 i=1

where v > 0 is a regularization parameter.’ The first term in (2) is the
average of the error across the tasks, measured according to a prescribed
loss function L : R x R — R which is convex in the second argument

5 A similar regularization function, but without matrix U, was also independently
developed by [39] for the purpose of multi-task feature selection — see problem
(5) below.
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vI'-1+1

Fig. 1. Values of the (2, 1)-norm of a matrix containing only 7" nonzero entries,
equal to 1. When the norm increases, the level of sparsity along the rows
decreases.

(for example, the square loss defined for every y,z € R as L(y,z) =
(y — 2)?). The second term is a regularization term which penalizes the
(2,1)-norm of matrix A. It is obtained by first computing the 2-norms
of the (across the tasks) rows a’ (corresponding to feature i) and then
the 1-norm of the vector b(A) = (||at|2, ..., ||a?||2). The magnitudes of
the components of the vector b(A) indicate how important each feature
is.

The (2, 1)-norm favors a small number of nonzero rows in the matrix
A, thereby ensuring that common features will be selected across the
tasks. This point is further illustrated in Figure 1, where we consider
the case that the entries of matrix A take binary values and that there
are only T entries which are equal to 1. The minimum value of the
(2,1)-norm equals VT and is obtained when the “1” entries are all
aligned along one row. Instead, the maximum value equals T and is
obtained when each “1” entry is placed in a different row (we assume
here that d > T).

When the feature matrix U is prescribed and A minimizes the con-
vex function £(-,U) the number of nonzero components of the vector
b(A) will typically be nonincreasing with . This sparsity property can
be better understood by considering the case that there is only one
task, say task ¢. In this case, function (2) is given by

m

ZL(ytm (ae, U we)) + a7 (3)

=1

It is well known that using the 1-norm leads to sparse solutions, that
is, many components of the learned vector a; are zero, see [20] and
references therein. Moreover, the number of nonzero components of a
solution of problem (3) is typically a nonincreasing function of v [36].



Convex Multi-Task Feature Learning 7

Since we do not simply want to select the features but also learn
them, we further minimize the function £ over U. Therefore, our ap-
proach for multi-task feature learning is to solve the optimization prob-
lem

min {S(A, U):Ue0? Ac RdXT} . (4)

This method learns a low-dimensional representation which is shared
across the tasks. As in the single-task case, the number of features
learned will be typically nonincreasing with the regularization param-
eter v — we will present experimental evidence of this in Section 6.

We note that solving problem (4) is challenging for two main rea-
sons. First, it is a non-convex problem, although it is separately convex
in each of the variables A and U. Secondly, the regularizer HAH%l is
not smooth, which makes the optimization problem more difficult. In
the next two sections, we will show how to find a global optimal solu-
tion of this problem through solving an equivalent convex optimization
problem. From this point on we assume that A = 0 does not minimize
problem (4), which would clearly be a case of no practical interest.

We conclude this section by noting that when matrix U is not
learned and we set U equal to the identity matrix, problem (4) se-
lects a “small” set of variables, common across the tasks. In this case,
we have the following convex optimization problem

T m
min{ZZL@mt,m)+7|A||%,1 : AeRdXT}. (5)

t=1 i=1

We shall return to problem (5) in Sections 3 and 4 where we present
an algorithm for solving it.

3 Equivalent Convex Optimization Problem

In this section, we present a central result of this paper. We show that
the non-convex and nonsmooth problem (4) can be transformed into
an equivalent convex problem. To this end, for every W € R™T with
columns wy and D € S, we define the function

T m

T
R(W,D) = " Ly, (we, 7)) Z (wy, DYwy).  (6)

t=1 i=1

Under certain constraints, this objective function gives rise to a convex
optimization problem, as we will show in the following. Furthermore,
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even though the regularizer in R is still nonsmooth, in Section 4 we
will show that partial minimization with respect to D has a closed-
form solution and this fact leads naturally to a globally convergent
optimization algorithm.

We begin with the main result of this section.

Theorem 1. Problem (4) is equivalent to the problem
min{R(W,D) : W e R*" DeS?, trace(D) <1,
range(W) C range(D) }. (7)

In particular, if (fl, U) is an optimal solution of (4) then

. d
o, D)= 04, UDiag( ”%”2) e
[All2,1 /,_,

is an optimal solution of problem (7); conversely, if (W, ﬁ) s an opti-
mal solution of problem (7) then any (A,U), such that the columns of
U form an orthonormal basis of eigenvectors of D and A=U"W, is
an optimal solution of problem (4).

To prove the theorem, we first introduce the following lemma which
will be useful in our analysis.

Lemma 1. For any b = (by,...,bq) € R? such that b; # 0,7 € Ng, we
have that

d d
b2
miH{ny aso Dig}:ubn% ®)

i=1 " i=1
and the minimizer is 5\1 = hbbl%, 1 € Ny.

Proof. From the Cauchy-Schwarz inequality we have that

d 1 1 d % d % d %
bl =S 5““‘3(ZM> (Df”’?) §<Z”lb’2> |
=1 =1 =1 =1

1 1
.. . . . . 2 22 .
The minimum is attained if and only if )‘f = ——foralli,j7 € Ny
L e 01

We can now prove Theorem 1.
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Proof of Theorem 1. First suppose that (A,U) belongs to the feasible
set of problem (4). Let W = UA and D = UDiag( \‘\‘Zi\\||22,1):-1ﬂ Uur.
Then

T

Z (wg, DY wy) = trace(W ' DTW)
t=1

— trace (ATUTU Diag (|[All21 a’[l$) L, UTUA)

i

. i d
= [| Al trace (Diag (||a’[1§);_, AAT)

d
= [ Allza Y la'll3 la'l3 = JlAI3,4-

i=1
Therefore, R(W, D) = £(A,U). Moreover, notice that W is a matrix
multiple of the submatrix of U which corresponds to the nonzero a’
and hence to the nonzero eigenvalues of D. Thus, we obtain the range
constraint in problem (7). Therefore, the infimum (7) (we will show
below that the infimum is attained) does not exceed the minimum (4).
Conversely, suppose that (W, D) belongs to the feasible set of problem
(7). Let D = UDiag ()\i)?zl UT be an eigendecomposition and A =
UTW. Then

T d
Z (wy, DY w,) = trace (Diag (Aj)jzl AAT> = Z A llat3.

t=1 i=1

If \; = 0 for some i € Ny, then u; € nu}l(D), thus using the range
constraint and W = U A we deduce that a' = 0. Consequently,

d ; 2

AHlab]2 = ||az||% > i — A
DN lalE=Y0 S = Y el | =
=1

ai#£0 ’ a’#£0

where we have used Lemma 1. Therefore, £(A,U) < R(W, D) and the
minimum (4) does not exceed the infimum (7). Because of the above
application of Lemma 1, we see that the infimum (7) is attained. Finally,
the condition for the minimizer in Lemma 1 yields the relationship
between the optimal solutions of problems (4) and (7). O

‘%,17

In problem (7) we have bounded the trace of matrix D from above,
because otherwise the optimal solution would be to simply set D = oo



10 Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil

and only minimize the empirical error term in the right hand side of
equation (6). Similarly, we have imposed the range constraint to ensure
that the penalty term is bounded below and away from zero. Indeed,
without this constraint, it may be possible that DW = 0 when W
does not have full rank, in which case there is a matrix D for which
ST (wy, DY wy) = trace(W T DTW) = 0.

In fact, the presence of the range constraint in problem (7) is due
to the presence of the pseudoinverse in the objective function R. As
the following corollary shows, it is possible to eliminate this constraint
and obtain the smooth regularizer (w;, D~'w;) at the expense of not
always attaining the minimum.

Corollary 1. Problem (7) is equivalent to the problem
inf{R(W, D) : WeR™ Des?, trace(D) < 1} . (9)

In particular, any minimizing sequence of problem (9) converges to a
minimizer of problem (7).

Proof. The theorem follows immediately from Theorem 1 and the
equality of the min and inf problems in Appendix A. 0O

Returning to the discussion of Section 2 on the (2, 1)-norm, we note
that the rank of the optimal matrix D indicates how many common
relevant features the tasks share. Indeed, it is clear from Theorem 1 that
the rank of matrix D equals the number of nonzero rows of matrix A.

We also note that problem (7) is similar to that in [22], where the
regularizer is 3.1 ((w;—wg), D" (w;—wp)) instead of S (wy, D*wy)
— that is, in our formulation we do not penalize deviations from a
common “mean” w.

The next proposition establishes that problem (7) is convex.

Proposition 1. Problem (7) is a convex optimization problem.

Proof. Let us define the extended function f : R x 8¢ — RU{+oc0} as

w'DTw if D € S% and w € range(D)
f(w, D) := . .

+00 otherwise
With this definition, problem (7) is identical to minimizing the sum of T’
such functions plus the error term in (6), subject to the trace constraint.
This is indeed true because the constraint range(WW) C range(D) is
equivalent to the T constraints wy € range(D),t € Np. The error term
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in (6) is the composition of function L, which is convex in the second
argument and a linear map, hence it is convex (see, for example, [15]).
Also, the trace constraint is linear and hence convex. Thus, to show
that problem (7) is convex, it suffices to show that f is convex. We will
show this by expressing f as a supremum of convex functions, more
specifically as

f(w, D) = sup{w v + trace(ED) : E € 8%, v e R4, 4E +vv" € 8},

for every w € R% and D € S%. To prove this equation, we first consider
the case D ¢ Si. We let u be an eigenvector of D corresponding to
a negative eigenvalue and set F = auu',a < 0,v = 0 to obtain that
the supremum on the right equals +00. Next, we consider the case that
w ¢ range(D). We can write w = Dz + n, where z,n € R%, n # 0 and
n € null(D). Thus,

w'v + trace(ED) = 2" Dv + n"v + trace(ED)

and setting £ = —iva,v = an,a € R4 we obtain 400 as the supre-
mum. Finally, we assume that D € S‘i and w € range(D). Combining
with E + fov" € 8% we get that trace ((E + fvvT)D) < 0. Therefore

1
w'v + trace(ED) <w'v — ZUTDU

and the expression on the right is maximized for w = %DU and obtains
the maximal value

1 1 1 1
§UTDU — Z’UTD’U = ZUTDU = ZUTDD+DU =w' DTw. O

We conclude this section by noting that when matrix D in problem
(7) is additionally constrained to be diagonal, we obtain a problem
equivalent to (5). Formally, we have the following corollary.

Corollary 2. Problem (5) is equivalent to the problem

d
min{R(VV, Diag(\)) : W e R>T AeR], Y N <1,
=1

A\ # 0 whenever w' # 0} (10)

and the optimal \ s given by
s el

I (11)
[Wll2,1
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4 Alternating Minimization Algorithm

In this section, we discuss an algorithm for solving the convex optimiza-
tion problem (7) which, as we prove, converges to an optimal solution.
The proof of convergence is a key technical result of this paper. By The-
orem 1 above, this algorithm will also provide us with a solution of the
multi-task feature learning problem (4). Our Matlab code for this algo-
rithm is available at http://www.cs.ucl.ac.uk/staff/a.argyriou/
code/index.html.

The algorithm is a technical modification of the one developed in
[22], where a variation of problem (7) was solved by alternately mini-
mizing function R with respect to D and W. It minimizes a perturba-
tion of the objective function (6) with a small parameter £ > 0. This
allows us to prove convergence to an optimal solution of problem (7)
by letting € — 0 as shown below. We also have observed that, in prac-
tice, alternating minimization of the unperturbed objective function
converges to an optimal solution of (7). However, in theory this con-
vergence is not guaranteed, because without perturbation the ranges
of W and D remain equal throughout the algorithm (see Algorithm 1
below).

The algorithm we now present minimizes the function R, : R¥*7T x
S‘Lr — R, given by

m

R:(W,D) = Z L(ys, (we, 243)) + v trace(D~Y(WWT +¢eI)),
t=1 i=1

where I denotes the identity matrix. The regularizer in this function
keeps D nonsingular, is smooth and, as we show in Appendix B (Propo-
sition 3), R. has a unique minimizer.

We now describe the two steps of Algorithm 1 for minimizing R.. In
the first step, we keep D fixed and minimize over W, that is we solve
the problem

T m T
min {ZZL(ytia (Wi, 213)) + 72 (we, D" Mwy) © W e RdXT} )
t=1

t=1 i=1

where, recall, w; are the columns of matrix W. This minimization can
be carried out independently across the tasks since the regularizer de-
couples when D is fixed. More specifically, introducing new variables
for D_%wt yields a standard 2-norm regularization problem for each
task with the same kernel K(z,2) = (z, Dz), z,z € R%.
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In the second step, we keep matrix W fixed, and minimize R, with
respect to D. To this end, we solve the problem

T
min {Z (wy, D™ wy) + etrace(D™Y) : D e S‘Lr,trace(D) <1
t=1
(12)
The term trace(D~!) keeps the D-iterates of the algorithm at a certain
distance from the boundary of S‘i and plays a role similar to that of
the barrier used in interior-point methods. In Appendix A, we prove
that the optimal solution of problem (12) is given by

- 1
p.(w) = W el (13)
trace(WWT +¢l)2

2
and the optimal value equals (trace(WI/VT +el )%) . In the same ap-

pendix, we also show that for ¢ = 0, equation (13) gives the minimizer
of the function R(W, -) subject to the constraints in problem (7).

Algorithm 1 can be interpreted as alternately performing a super-
vised and an unsupervised step. In the supervised step we learn task-
specific functions (namely the vectors w;) using a common represen-
tation across the tasks. This is because D encapsulates the features
u; and thus the feature representation is kept fixed. In the unsuper-
vised step, the regression functions are fixed and we learn the common
representation. In effect, the (2,1)-norm criterion favors the most con-
cise representation which “models” the regression functions through
W =UA.

We now present some convergence properties of Algorithm 1. We
state here only the main results and postpone their proofs to Appendix
B. Let us denote the value of W at the n-th iteration by W (. First,
we observe that, by construction, the values of the objective are non-
increasing, that is,

R(WOHD, D (W)Y < min{R.(V, D.(W™)) : V e R*T}

<
< R.(W™ D (W),

These values are also bounded, since L is bounded from below, and thus
the iterates of the objective function converge. Moreover, the iterates
W) also converge as stated in the following theorem.

Theorem 2. For every € > 0, the sequence {(W(”),DE(W(”))) 'n €
N} converges to the minimizer of Re subject to the constraints in (12).
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Algorithm 1 (Multi- Task Feature Learning)
Input: training sets {(z4, yi) iy, t € Np

Parameters: regularization parameter -y, tolerances ¢, tol

Output: d x d matrix D, d x T regression matrix W = [wy, ..., wr]

Initialization: set D = é

while ||W — W, || > tol do
fort=1,...,7T do

compute wy = argmin { > | L(ys, (w, z4:)) + v(w, D7 w) : w € R?}

end for
sot D — WWT et
trace(WWT+sI)%
end while

Algorithm 1 minimizes the perturbed objective R.. In order to ob-
tain a minimizer of the original objective R, we can employ a modified
algorithm in which ¢ is reduced towards zero whenever W (™ has sta-
bilized near a value. Our next theorem shows that the limiting points
of such an algorithm are optimal.

Theorem 3. Consider a sequence {ey > 0 : £ € N} which converges
to zero. Let (Wy, D.,(Wy)) be the minimizer of Re, subject to the con-
straints in (12), for every £ € N. Then any limiting point of the sequence
{(We, D.,(Wy)) : £ € N} is an optimal solution to problem (7).

We proceed with a few remarks on an alternative formulation for
problem (7). By substituting equation (13) with € = 0 in the equation
(6) for R, we obtain a regularization problem in W only, which is given
by

T m
min{ZZL@wt,m)+qu|§ : WeRM} .

t=1 i=1

where we have defined ||W ||y, = trace(WWT)%.

The expression ||W ||, in the regularizer is called the trace norm. It
can also be expressed as the sum of the singular values of W. As shown
in [23], the trace norm is the convex envelope of rank(¥) in the unit
ball, which gives another interpretation of the relationship between the
rank and 7 in our experiments. Solving this problem directly is not
easy, since the trace norm is nonsmooth. Thus, we have opted for the
alternating minimization strategy of Algorithm 1, which is simple to
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implement and natural to interpret. We also note here that a similar
problem has been studied in [42] for the particular case of an SVM
loss function. It was shown there that the optimization problem can be
solved through an equivalent semi-definite programming problem. We
will further discuss relations with that work as well as other work in
Section 7.

We conclude this section by noting that, using Corollary 2, we can
make a simple modification to Algorithm 1 so that it can be used to
solve the variable selection problem (5). Specifically, we modify the
computation of the matrix D (penultimate line in Algorithm 1) as
D = Diag()\), where the vector A\ = (A1,...,\q) is computed using
equation (11).

5 Learning Nonlinear Features

In this section, we consider the case that the features are associated to
a kernel and hence they are in general nonlinear functions of the input
variables. First, in Section 5.1 we use a representer theorem for an opti-
mal solution of problem (7), in order to obtain an optimization problem
of bounded dimensionality. Then, in Section 5.2 we show how to solve
this problem using an algorithm which is a variation of Algorithm 1.

5.1 A Representer Theorem

We begin by restating our optimization problem in the more general
case when the tasks’ functions belong to a reproducing kernel Hilbert
space, see e.g. [7, 37, 44] and references therein. Formally, we now wish
to learn T regression functions f¢,t € Ny of the form

filw) = (a, U p(x)) = (wr, (), = €RY,

where ¢ : R — RM is a prescribed feature map. This map will, in
general, be nonlinear and its dimensionality M may be large. In fact,
the theoretical and algorithmic results which follow apply to the case of
an infinite dimensionality as well. As typical, we assume that the kernel
function K (z,2") = (p(x), ¢(x')) is given. As before, in the following we
will use the subscript notation for the columns of a matrix, for example
w; denotes the t-th column of matrix W.

We begin by recalling that Appendix A applied to problem (7) leads
to a problem in W with the trace norm as the regularizer. Modifying
slightly to account for the feature map, we obtain the problem
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T m
min{ZZL(yti,<wta<ﬁ($ti)>)+7”W|§r : WGRdXT}- (14)
=1

t=1 1

This problem can be viewed as a generalization of the standard 2-
norm regularization problem. Indeed, in the case ¢ = 1 the trace norm
|W]|4r is simply equal to ||w;||2. In this case, it is well known that an
optimal solution w € R of such a problem is in the span of the training

data, that is
m
w = Z ci p(zi)
i=1

for some ¢; € R, i = 1,...,m. This result is known as the representer
theorem — see e.g., [44]. We now extend this result to the more general
form (14). Our proof is connected to the theory of operator monotone
functions. We note that a representer theorem for a problem related to
(14) has been presented in [2].

Theorem 4. If W is an optimal solution of problem (14) then for every
t € Ny there exists a vector ¢; € R™T such that

Wy = Z (Ct)si(/)(xsi)- (15)

s=1 i=1

Proof. Let £ = span{p(zs) : s € Np,i € Ny, }. We can write wy =
pe +ne, t € Np where ps € £ and ny € £+. Hence W = P + N,
where P is the matrix with columns p; and N the matrix with columns
ng. Moreover we have that PTN = 0. From Lemma 3 in Appendix
C, we obtain that ||W|y > || Plltr- We also have that (wy, p(xy)) =
(pt, p(x4;)). Thus, we conclude that whenever W is optimal, N must
be zero. 0O

We also note that this theorem can be extended to a general family of
spectral norms [6].

An alternative way to write equation (15), using matrix notation,
is to express W as a multiple of the input matrix. The latter is the
matrix ® € RM*™T whose (t,i)-th column is the vector p(zy;) € RM,
t € Np,i € N,,. Hence, denoting with C € R™'*T the matrix with
columns ¢, equation (15) becomes

W=2aC. (16)

We now apply Theorem 4 to problem (14) in order to obtain an
equivalent optimization problem in a number of variables independent
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of M. This theorem implies that we can restrict the feasible set of (14)
only to matrices W € R satisfying (16) for some C' € R™T*T,

Let £ = span{p(z) : t € Np,i € Ny, } as above and let § its dimen-
sionality. In order to exploit the unitary invariance of the trace norm,
we consider a matrix V € RM*9 whose columns form an orthogonal

basis of £. Equation (16) implies that there is a matrix © € R*7T,
whose columns we denote by ¢, t € Ny, such that
W=Vo. (17)

Substituting equation (17) in the objective of (14) yields the objec-
tive function

ZZL Ytin (VO o(24))) + *y<trace(V@@TVT)%)2 —

t=1 i=1
T m 9
T T 1

ZZL(yti><19t,V go(xm-»)—l—'y(trace(@@ )2) =
t=1 i=1

T m

D> Ly (9, V(@) + 411015 -

t=1 i=1

Thus, we obtain the following proposition.

Proposition 2. Problem (14) is equivalent to

T m
H{ZZL yiss (O, 20)) + 7O @eRM}, (18)

t=1 i=1
where
2ti =V p(wy), t € Npyi € Ny, . (19)
Moreover, there is an one-to-one correspondence between optimal solu-

tions of (14) and those of (18), given by W =V O.

Problem (18) is a problem in §T variables, where 6T < mT?, and
hence it can be tractable regardless of the dimensionality M of the
original feature map.
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Algorithm 2 (Multi-Task Feature Learning with Kernels)
Input: training sets {(z4, yi) iy, t € Np

Parameters: regularization parameter -y, tolerances ¢, tol
Output: § x T coefficient matrix B = [by,...,br|, indices {(t,,i,), v €
Ns} C Npr x N,
Initialization: using only the kernel values, find a matrix R € R°*% and in-
dices {(t,,7,)} such that {25:1 O(Xtyi, ) o, 1 E Ng} form an orthogonal
basis for the features on the training data
compute the modified inputs z;; = R” (K(Uﬁtﬂy,l‘m‘))i:l ,teNp,1 €N,
set A = %
while ||© — O, || > tol do

fort=1,...,T do

compute Uy = argmin {37 | L(ys, (U, 211)) + 70, A719) : 9 € R}

end for
set A = _(@0T4ent
trace(@@T-&-sI)%

end while

return B = RO and {(¢,,4,),v € Ns}

5.2 An Alternating Algorithm for Nonlinear Features

We now address how to solve problem (18) by applying the same strat-
egy as in Algorithm 1. It is clear from the discussion in Section 4 that
(18) can be solved with an alternating minimization algorithm, which
we present as Algorithm 2.

In the initialization step, Algorithm 2 computes a matrix R € R9*?
which relates the orthogonal basis V' of £ with a basis {¢(x4,,), v €
Ns,t, € Np,i, € N, } from the inputs. We can write this relation as

V =90R (20)

where ® € RM*9 is the matrix whose v-th column is the vector ¢(zy,;, ).

To compute R using only Gram matrix entries, one approach is
Gram-Schmidt orthogonalization. At each step, we consider an input
xy; and determine whether it enlarges the current subspace or not by
computing kernel values with the inputs forming the subspace. How-
ever, Gram-Schmidt orthogonalization is sensitive to round-off errors,
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which can affect the accuracy of the solution ([25, Sec. 5.2.8]). A more
stable but computationally less appealing approach is to compute an
eigendecomposition of the mT x mT Gram matrix ®'®. A middle
strategy may be preferable, namely, randomly select a reasonably large
number of inputs and compute an eigendecomposition of their Gram
matrix; obtain the basis coefficients; complete the vector space with a
Gram-Schmidt procedure.

After the computation of R, the algorithm computes the inputs in
(19), which by (20) equal zy; = Vp(ay) = RT®Tp(zy) = RTK(zy),
where K(z) denotes the d-vector with entries K (zy,;, ,z), v € Ns.
In the main loop, there are two main steps. The first one (©-step)
solves T independent regularization problems using the Gram entries
2j;Azij .1, 5 € Ny, t € Np. The second one (A-step) is the computation
of a § x § matrix square root.

Finally, the output of the algorithm, matrix B, satisfies that

W = ®B (21)

by combining equations (17) and (20). Thus, a prediction on a new
input = € R? is computed as

filx) = (wi, (@) = (b, K (),  t€Nr.

One can also express the learned features in terms of the input
basis {¢(x,:,),v € Ns}. To do this, we need to compute an eigende-

composition of B®T ®B. Indeed, we know that W = UXQT, where
U e RMXY 5 ¢ Si+ diagonal, Q) € RT*0 orthogonal, ' < §, and the
columns of U are the significant features learned. From this and (21)

we obtain that _
U=oBQRx! (22)

and X and @ can be computed from
QX’Q" =W'W =B"d" ®B.
Finally, the coefficient matrix A can be computed from W = UA, (21)
and (22), yielding
Z T
A= @
0

The computational cost of Algorithm 2 depends mainly on the di-
mensionality §. Note that kernel evaluations using K appear only in
the initialization step. There are O(dmT') kernel computations during
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the orthogonalization process and O(5?mT) additional operations for
computing the vectors z;;. However, these costs are incurred only once.
Within each iteration, the cost of computing the Gram matrices in the
O-step is O(6?mT) and the cost of each learning problem depends on
5. The matrix square root computation in the A-step involves O(53)
operations. Thus, for most commonly used loss functions, it is expected
that the overall cost of the algorithm is O(6?mT) operations. In par-
ticular, in several cases of interest, such as when all tasks share the
same training inputs, 0 can be small and Algorithm 2 can be particu-
larly efficient. We would also like to note here that experimental trials,
which are reported in Section 6, showed that usually between 20 and
100 iterations were sufficient for Algorithms 1 and 2 to converge.

As a final remark, we note that an algorithm similar to Algorithm
2 would not work for variable selection. This is true because Theorem
4 does not apply to the optimization problem (10), where matrix D
is constrained to be diagonal. Thus, variable selection — and in par-
ticular 1-norm regularization — with kernels remains an open problem.
Nevertheless, this fact does not seem to be significant in the multi-task
context of this paper. As we will discuss in Section 6, variable selection
was outperformed by feature learning in our experimental trials. How-
ever, variable selection could still be important in a different setting,
when a set including some “good” features is a priori given and the
question is how to select exactly these features.

6 Experiments

In this section, we present numerical experiments with our methods,
both the linear Algorithm 1 and the nonlinear Algorithm 2, on synthetic
and real data sets. In all experiments, we used the square loss function
and automatically tuned the regularization parameter vy by selecting
among the values {10" : r € {—6,...,3}} with 5-fold cross-validation.

6.1 Synthetic Data

We first used synthetic data to test the ability of the algorithms to
learn the common across tasks features. This setting makes it possible
to evaluate the quality of the features learned, as in this case we know
what the common across tasks features are.
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Linear Synthetic Data

We consider the case of regression and a number of up to 7' = 200
tasks. Each of the w; parameters of these tasks was selected from a
5-dimensional Gaussian distribution with zero mean and covariance
Cov = Diag(1,0.64,0.49,0.36,0.25). To these 5-dimensional w;’s we
kept adding up to 10 irrelevant dimensions which are exactly zero. The
training and test data were generated uniformly from [0,1]¢ where d
ranged from 5 to 15. The outputs y; were computed from the w; and xy;
as Yy = (wy, i)+, where ¥ is zero-mean Gaussian noise with standard
deviation equal to 0.1. Thus, the true features (u;,z) we wish to learn
were in this case just the input variables. However, we did not a priori
assume this and we let our algorithm learn — not select — the features.
That is, we used Algorithm 1 to learn the features, not its variant which
performs variable selection (see our discussion at the end of Section 4).
The desired result is a feature matrix U which is close to the identity
matrix (on 5 columns) and a matrix D approximately proportional to
the covariance Cov used to generate the task parameters (on a 5 x 5
principal submatrix). In this experiment, we did not use a bias term.

We generated 5 and 20 examples per task for training and testing,
respectively. To test the effect of the number of jointly learned tasks
on the test performance and (more importantly) on the quality of the
features learned, we used our methods with T = 10, 25, 100, 200 tasks.
For T = 10,25 and 100, we averaged the performance metrics over
randomly selected subsets of the 200 tasks, so that our estimates have
comparable variance. We also estimated each of the 200 tasks indepen-
dently using standard ridge regressions.

We present, in Figure 2, the impact of the number of tasks simul-
taneously learned on the test performance as well as the quality of the
features learned, as the number of irrelevant variables increases. First,
as the left plot shows, in agreement with past empirical and theoretical
evidence — see e.g., [9] — learning multiple tasks together significantly
improves on learning the tasks independently, as the tasks are indeed
related in this case. Moreover, performance improves as the number of
tasks increases. More important, this improvement increases with the
number of irrelevant variables.

The plot on the right of Figure 2 is the most relevant one for our
purposes. It shows the distance of the learned features from the ac-
tual ones used to generate the data. More specifically, we depict the
Frobenius norm of the difference of the learned 5 x 5 principal subma-
trix of D and the actual Cov matrix (normalized to have trace 1). We
observe that adding more tasks leads to better estimates of the under-
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Fig. 2. Linear synthetic data. Left: test error versus the number of irrele-
vant variables, as the number of tasks simultaneously learned changes. Right:
Frobenius norm of the difference of the learned and actual matrices D ver-
sus the number of irrelevant variables, as the number of tasks simultaneously
learned changes. This is a measure of the quality of the learned features.
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Fig. 3. Linear synthetic data. Left: number of features learned versus the
regularization parameter -y for 6 irrelevant variables. Right: matrix A learned,
indicating the importance of the learned features — the first 5 rows correspond
to the true features (see text). The color scale ranges from yellow (low values)
to purple (high values).

lying features. Moreover, like for the test performance, the relative (as
the number of tasks increases) quality of the features learned increases
with the number of irrelevant variables. Similar results were obtained
by plotting the residual of the learned U from the actual one, which is
the identity matrix in this case.

We also tested the effect of the regularization parameter v on the
number of features learned (as measured by rank(D)) for 6 irrelevant
variables. We show the results on the left plot of Figure 3. As expected,
the number of features learned decreases with . Finally, the right plot
in Figure 3 shows the absolute values of the elements of matrix A
learned using the parameter v selected by cross-validation. This is the
resulting matrix for 6 irrelevant variables and all 200 simultaneously
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Fig. 4. Nonlinear synthetic data. Left: test error versus number of variables
as the number of simultaneously learned tasks changes, using a quadratic +
linear kernel. Right: test error versus number of variables for 200 tasks, using
three different kernels (see text).

learned tasks. This plot indicates that our algorithm learns a matrix A
with the expected structure: there are only five important features. The
(normalized) 2-norms of the corresponding rows are 0.31,0.21,0.12,0.10
and 0.09 respectively, while the true values (diagonal elements of C'ov
scaled to have trace 1) are 0.36,0.23,0.18,0.13 and 0.09 respectively.

Nonlinear Synthetic Data

Next, we tested whether our nonlinear method (Algorithm 2) can out-
perform the linear one when the true underlying features are nonlin-
ear. For this purpose, we created a new synthetic data set in the same
way as before, but this time we used a feature map ¢ : R® — RM,
More specifically, we have 6 relevant linear and quadratic features
and a bias term: ¢(z) = (:L‘%,xﬁ, T1X9, T3T5, T2, T4, 1). That is, the
outputs were generated as yy; = (wy, p(xy)) + ¥, with the task pa-
rameters w; corresponding to the features above selected from a 7-
dimensional Gaussian distribution with zero mean and covariance equal
to Diag(0.5,0.25,0.1,0.05,0.15,0.1,0.15). All other components of each
w; were 0. The training and test sets were selected randomly from [0, 1]¢
with d ranging from 5 to 10, and each contained 20 examples per task.
Since there are more task parameters to learn than in the linear case, we
used more data per task for training in this simulation. In the execution
of our method, we did not augment the input with a bias term.

We report the results in Figure 4. As for the linear case, the left plot
in the figure shows the test performance versus the number of tasks si-
multaneously learned, as the number of irrelevant variables increases.
Note that the dimensionality of the feature map scales quadratically
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Fig. 5. Matrix A learned in the nonlinear synthetic data experiment. The
first 7 rows correspond to the true features (see text).

with the input dimensionality shown on the z-axis of the plot. The
kernel used for this plot was Ky (z,2") := (272’ +1)?. This is a “good”
kernel for this data set because the corresponding features include all
of the monomials of . The results are qualitatively similar to those
in the linear case. Learning multiple tasks together improves on learn-
ing the tasks independently In this experiment, a certain number of
tasks (greater than 10) is required for improvement over independent
learning.

Next, we tested the effects of using the “wrong” kernel, as well as the
difference between using a nonlinear kernel versus using a linear one.
These are the most relevant to our purpose tests for this experiment.
We used three different kernels. One is the sum of the quadratic and
linear kernels defined above, the second is K, (z,2') := (z72')* and
the third is Kj(z,2) := 272’ 4+ 1. The results are shown on the right
plot of Figure 4. First, notice that since the underlying feature map
involves both quadratic and linear features, it would be expected that
the first kernel gives the best results, and this is indeed true. Second,
notice that using a linear kernel (and the linear Algorithm 1) leads to
poorer test performance. Thus, our nonlinear Algorithm 2 can exploit
the higher approximating power of the most complex kernel in order
to obtain better performance.

Finally, Figure 5 contains the plot of matrix A learned for this ex-
periment using kernel K, no irrelevant variables and all 200 tasks
simultaneously, as we did in Figure 3 for the linear case. Similarly to
the linear case, our method learns a matrix A with the desired struc-
ture: only the first 7 rows have large entries. Note that the first 7 rows
correspond to the monomials of ¢, while the remaining 14 rows corre-
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spond to the other monomial components of the feature map associated
with the kernel.

6.2 Conjoint Analysis Experiment

Next, we tested our algorithms using a real data set from [33] about
people’s ratings of products.® The data was taken from a survey of
180 persons who rated the likelihood of purchasing one of 20 differ-
ent personal computers. Here the persons correspond to tasks and the
computer models to examples. The input is represented by the follow-
ing 13 binary attributes: telephone hot line (TE), amount of memory
(RAM), screen size (SC), CPU speed (CPU), hard disk (HD), CD-
ROM /multimedia (CD), cache (CA), color (CO), availability (AV),
warranty (WA), software (SW), guarantee (GU) and price (PR). We
also added an input component accounting for the bias term. The out-
put is an integer rating on the scale 0 — 10. As in one of the cases in
[33], for this experiment we used the first 8 examples per task as the
training data and the last 4 examples per task as the test data. We
measure the root mean square error of the predicted from the actual
ratings for the test data, averaged across the people.

We show results for the linear Algorithm 1 in Figure 6. In agreement
with the simulations results above and past empirical and theoretical
evidence — see e.g., [9] — the performance of Algorithm 1 improves as
the number of tasks increases. It also performs better (for all 180 tasks)
— test error is 1.93 — than independent ridge regressions, whose test
error is equal to 3.88. Moreover, as shown in Figure 7, the number of
features learned decreases as the regularization parameter v increases,
as expected.

This data has been used also in [22]. One of the empirical findings
of [22, 33|, a standard one regarding people’s preferences, is that es-
timation improves when one also shrinks the individual w;’s towards
a “mean of the tasks”, for example the mean of all the w;’s. Hence,
it may be more appropriate for this data set to use the regularization
term S, ((wy — wp), D*(w; — wp)) as in [22] (see above) instead of
Zthl {(wg, D wy) which we use here. Indeed, test performance is better
with the former than the latter. The results are summarized in Table 1.
We also note that the hierarchical Bayes method of [33], similar to that
of [8], also shrinks the w;’s towards a mean across the tasks. Algorithm 1
performs similarly to hierarchical Bayes (despite not shrinking towards
a mean of the tasks) but worse than the method of [22]. However, we

5 We would like to thank Peter Lenk for kindly sharing this data set with us.
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Fig. 6. Conjoint experiment with computer survey data: average root mean
square error vs. number of tasks.
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Fig. 7. Conjoint experiment with computer survey data: number of features
learned (with 180 tasks) versus the regularization parameter -y.
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Fig. 8. Conjoint experiment with computer survey data. Left: matrix A
learned, indicating the importance of features learned for all 180 tasks si-
multaneously. Right: the most important feature learned, common across the
180 people/tasks simultaneously learned.

are mainly interested here in learning the common across people/tasks
features. We discuss this next.

We investigate which features are important to all consumers as well
as how these features weight the 13 computer attributes. We demon-
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Table 1. Comparison of different methods for the computer survey data.
MTL-FEAT is the method developed here.

Method RMSE
Independent 3.88
Hierarchical Bayes [33] 1.90
RR-Het [22] 1.79

MTL-FEAT (linear kernel) 1.93
MTL-FEAT (Gaussian kernel) | 1.85
MTL-FEAT (variable selection)| 2.01

strate the results in the two adjacent plots of Figure 8, which were
obtained by simultaneously learning all 180 tasks. The plot on the left
shows the absolute values of matrix A of feature coefficients learned for
this experiment. This matrix has only a few large rows, that is, only
a few important features are learned. In addition, the coefficients in
each of these rows do not vary significantly across tasks, which means
that the learned feature representation is shared across the tasks. The
plot on the right shows the weight of each input variable in the most
important feature. This feature seems to weight the technical charac-
teristics of a computer (RAM, CPU and CD-ROM) against its price.
Note that (as mentioned in the introduction) this is different from se-
lecting the most important variables. In particular, in this case the
relative “weights” of the 4 variables used in this feature (RAM, CPU,
CD-ROM and price) are fized across all tasks/people.

We also tested our multi-task variable selection method, which con-
strains matrix D in Algorithm 1 to be diagonal. This method led to
inferior performance. Specifically, for T' = 180, multi-task variable se-
lection had test error equal to 2.01, which is worse than the 1.93 error
achieved with multi-task feature learning. This supports the argument
that “good” features should combine multiple attributes in this prob-
lem. Finally, we tested Algorithm 2 with a Gaussian kernel, achieving a
slight improvement in performance — see Table 1. By considering radial
kernels of the form K (x,z') = e~wlle=2'lI* and selecting w through cross-
validation, we obtained a test error of 1.85 for all 180 tasks. However,
interpreting the features learned is more complicated in this case, be-
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cause of the infinite dimensionality of the feature map for the Gaussian
kernel.

6.3 School Data

We have also tested our algorithms on the data from the Inner London
Education Authority”. This data set has been used in previous work on
multitask learning, for example in [8, 21, 24]. It consists of examination
scores of 15362 students from 139 secondary schools in London during
the years 1985, 1986 and 1987. Thus, there are 139 tasks, corresponding
to predicting student performance in each school. The input consists
of the year of the examination (YR), 4 school-specific and 3 student-
specific attributes. Attributes which are constant in each school in a
certain year are: percentage of students eligible for free school meals,
percentage of students in VR band one (highest band in a verbal rea-
soning test), school gender (S.GN.) and school denomination (S.DN.).
Student-specific attributes are: gender (GEN), VR band (can take the
values 1,2 or 3) and ethnic group (ETH). Following [21], we replaced
categorical attributes (that is, all attributes which are not percentages)
with one binary variable for each possible attribute value. In total, we
obtained 27 attributes. We also found that results were similar with
and without a bias term.

We generated the training and test sets by 10 random splits of the
data, so that 75% of the examples from each school (task) belong to
the training set and 25% to the test set. We note that the number
of examples (students) differs from task to task (school). On average,
the training set includes about 80 students per school and the test set
about 30 students per school. Moreover, we tuned the regularization
parameter with 15-fold cross-validation. To account for different school
populations, we computed the cross-validation error within each task
and then normalized according to school population. The overall mean
squared test error was computed by normalizing for each school in a
similar way. In order to compare with previous work on this data set, we
used the measure of percentage explained variance from [8]. Explained
variance is defined as one minus the mean squared test error over the
total variance of the data (computed within each task) and indicates
the percentage of variance explained by the prediction model.

The results for this experiment are shown in Table 2. The “inde-
pendent” result is the one obtained by training 139 ridge regressions

7 Available at http://www.mlwin.com/intro/datasets.html.
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Table 2. Comparison of different methods for the school data.

Method Explained variance
Aggregate 22.7+1.3%
Independent 23.8 £2.1%
MTL-FEAT (variable selection)|  24.8 +2.0%
MTL-FEAT (linear kernel) 26.7 £2.0%
MTL-FEAT (Gaussian kernel) 26.4 + 1.9%

on each task separately (this also means learning the regularization pa-
rameters independently). The “aggregate” result is the one obtained by
training one ridge regression on the whole data, as though all students
belonged to the same school. A first observation is that training inde-
pendently does at least as well as aggregate training. This is reinforced
when computing the across-tasks standard deviation of explained vari-
ance, which is 30% for independent and 26% for aggregate learning.
Therefore, there is high variance across the tasks and it seems that
they are not concentrated around one prototype task.

From the table we see that our MTL-FEAT algorithm improves
upon both independent and aggregate single task learning. Moreover,
we see that variable selection performs worse than feature learning
and not clearly better than independent learning. Finally, multi-task
feature learning using an isotropic Gaussian kernel performs equally
well as learning with a linear kernel.

Results on this data set have been obtained in [8] using a hierarchi-
cal Bayesian multi-task method and in [21] using a different multi-task
regularization method. Both results seem to be better than ours, how-
ever it is difficult to compare with them because the objective functions
used are not directly comparable to problem (7). Moreover, the data
splits used in [8] are not available and may affect the result because of
the high variance across the tasks.

We note, in passing, that a number of key differences between
Bayesian approaches, like the ones of [8, 32, 47] and [33], and regular-
ization ones, like the one discussed in this paper, have been analyzed
in [22]. For example, a key difference is on the selection of the regu-
larization parameter -, which for Bayesian methods is to some extent
determined from a prior distribution while in our case it is selected
from the data using, for example, cross-validation. We refer the reader
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Fig. 9. School data. Left: matrix A learned for the school data set using a
linear kernel. For clarity, only the 15 most important learned features/rows
are shown. Right: The most important feature learned, common across all 139
schools/tasks simultaneously learned.

o [22] for more information on this issue as well as other similarities
and differences between the two approaches.

This data set seems well-suited to the approach we have proposed,
as one may expect the learning tasks to be very related without be-
ing the same — as also discussed in [8, 21] — in the sense assumed in
this paper. Indeed, one may expect that academic achievement should
be influenced by the same variables across schools, if we exclude sta-
tistical variation of the student population within each school. This
is confirmed in Figure 9, where the learned coefficients and the most
important feature are shown. As expected, the predicted examination
score depends very strongly on the student’s VR band. The other vari-
ables are much less significant. Ethnic background (primarily British-
born, Carribean and Indian) and gender have the next largest influence.
What is most striking perhaps is that none of the school-specific at-
tributes has any noticeable significance.

Finally, the effects of the number of tasks on the test performance
and of the regularization parameter v on the number of features learned
are similar to those for the conjoint and synthetic data: as the number
of tasks increases, test performance improves and as - increases sparsity
increases. These plots are similar to Figures 6 and 7 and are not shown
for brevity.

6.4 Dermatology Data

Finally, we show a real-data experiment where it seems (as these are
real data, we cannot know for sure whether indeed this is the case)
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Table 3. Performance of the algorithms for the dermatology data.

Method Misclassifications
Independent (linear) 16.5 £ 4.0
MTL-FEAT (linear) 16.5+ 2.6

Independent (Gaussian) 9.8+ 3.1
MTL-FEAT (Gaussian) 9.5+ 3.0

10f

151

20f

25F

30f

Fig. 10. Dermatology data. Feature coefficients matrix A learned, using a
linear kernel.

that the tasks are unrelated (at least in the way we have defined in
this paper). In this case, our methods find features which are different
across the tasks, and do not improve or decrease performance relative
to learning each task independently.

We used the UCI dermatology data set® as in [31]. The problem is a
multi-class one, namely to diagnose one of six dermatological diseases
based on 33 clinical and histopathological attributes (and an additional
bias component). As in the aforementioned paper, we obtained a multi-
task problem from the six binary classification tasks. We divided the
data set into 10 random splits of 200 training and 166 testing points
and measured the average test error across these splits.

We report the misclassification test error in Table 3. Algorithm 1
gives similar performance to that obtained in [31] with joint feature se-

8 Available at http://www.ics.uci.edu/mlearn/MLSummary.html.
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lection and linear SVM classifiers. However, similar performance is also
obtained by training 6 independent classifiers. The test error decreased
when we ran Algorithm 2 with a single-parameter Gaussian kernel, but
it is again similar to that obtained by training 6 independent classifiers
with a Gaussian kernel. Hence one may conjecture that these tasks are
weakly related to each other or unrelated in the way we define in this
paper.

To further explore this point, we show the matrix A learned by
Algorithm 1 in Figure 10. This figure indicates that different tasks
(diseases) are explained by different features. These results reinforce our
hypothesis that these tasks may be independent. They indicate that in
such a case our methods do not “hurt” performance by simultaneously
learning all tasks. In other words, in this problem our algorithms did
learn a “sparse common representation” but did not — and probably
should not — force each feature learned to be equally important across
the tasks.

7 Discussion

We have presented an algorithm which learns common sparse repre-
sentations across a pool of related tasks. These representations are as-
sumed to be orthonormal functions in a reproducing kernel Hilbert
space. Our method is based on a regularization problem with a novel
type of regularizer, which is a mixed (2, 1)-norm.

We showed that this problem, which is non-convex, can be reformu-
lated as a convex optimization problem. This result makes it possible
to compute the optimal solutions using a simple alternating minimiza-
tion algorithm, whose convergence we have proven. For the case of a
high-dimensional feature map, we have developed a variation of the
algorithm which uses kernel functions. We have also proposed a varia-
tion of the first algorithm for solving the problem of multi-task feature
selection with a linear feature map.

We have reported experiments with our method on synthetic and
real data. They indicate that our algorithms learn sparse feature rep-
resentations common to all the tasks whenever this helps improve per-
formance. In this case, the performance obtained is better than that
of training the tasks independently. Moreover, when applying our al-
gorithm on a data set with weak task interdependence, performance
does not deteriorate and the representation learned reflects the lack of
task relatedness. As indicated in one such experiment, one can also use
the estimated matrix A to visualize the task relatedness. Finally, our
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experiments have shown that learning orthogonal features improves on
just selecting input variables.

To our knowledge, our approach provides the first convex optimiza-
tion formulation for multi-task feature learning. Although convex opti-
mization methods have been derived for the simpler problem of feature
selection [31], prior work on multi-task feature learning has been based
on more complex optimization problems which are not convex [3, 9, 18]
and, so, these methods are not guaranteed to converge to a global min-
imum. In particular, in [9, 18] different neural networks with one or
more hidden layers are trained for each task and they all share the
same hidden weights. These common hidden layers and weights act as
an internal representation (like the features in our formulation) which
is shared by all the tasks.

Our algorithm also shares some similarities with recent work in [3]
where they alternately update the task parameters and the features.
Two main differences are that their formulation is not convex and that,
in our formulation, the number of learned features is not fixed in ad-
vance but it is controlled by a regularization parameter.

As noted in Section 4, our work relates to that in [2, 42], which
investigate regularization with the trace norm in the context of collab-
orative filtering. In fact, the sparsity assumption which we have made
in our work, starting with the (2, 1)-norm, connects to the low rank as-
sumption in that work. Hence, it may be possible that our alternating
algorithm, or some variation of it, could be used to solve the optimiza-
tion problems of [42, 2]. Such an algorithm could be used with any
convex loss function.

Other interesting approaches which may be pursued in the context of
multi-task learning include multivariate linear models in statistics such
as reduced rank regression [30], partial least squares [45] and canonical
correlation analysis [29] (see also [16]). These methods are based on
generalized eigenvalue problems — see, for example, [13, Chapter 4] for a
nice review. They have also been extended in an RKHS setting, see, for
example, [11, 26] and references therein. Although these methods have
proved useful in practical applications, they require that the same input
examples are shared by all the tasks. On the contrary, our approach
does not rely on this assumption.

Our work may be extended in different directions. First, it would
be interesting to carry out a learning theory analysis of the algorithms
presented in this paper. Results in [17, 35] may be useful for this pur-
pose. Another interesting question is to study how the solution of our
algorithms depends on the regularization parameter and investigate
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conditions which ensure that the number of features learned decreases
with the degree of regularization, as we have experimentally observed
in this paper. Results in [36] may be useful for this purpose.

Second, on the algorithmic side, it would be interesting to explore
whether our formulation can be extended to the more general class of
spectral norms in place of the trace norm. A special case of interest is
the (2, p)-norm for p € [1,00). This question is being addressed in [6].

Finally, a promising research direction is to explore whether differ-
ent assumptions about the features (other than the orthogonality one
which we have made throughout this paper) can still lead to different
convex optimization methods for learning other types of features. More
specifically, it would be interesting to study whether non-convex mod-
els for learning structures across the tasks, like those in [48] where ICA
type features are learned, or hierarchical features models like in [43],
can be reformulated in our framework.
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A Proof of Equation (13)

Proof. Consider a matrix C' € S%. We will compute inf{trace(D~1C) :
D € S84, trace(D) < 1}. From the Cauchy-Schwarz inequality for the
Frobenius norm, we obtain

trace(D~1C) > trace(D'C) trace(D)
= trace(( —202 )(C% %)> trace(D% %)

D~ D
> (trace (D 2 % - ) (trace C2 )

The equality is attained if and only if trace(D) = 1 and C:D"3 =aD3
C

for some a € R, or equivalently for D = ——. O
trace C'2

\_/\_/

N
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Using similar arguments as above, it can be shown that min{trace(D*C) :
D € 8%, trace(D) < 1,range(C) C range(D)} also equals (trace 05)2.

B Convergence of Algorithm 1

In this appendix, we present the proofs of Theorems 2 and 3. For this
purpose, we substitute equation (13) in the definition of R. obtaining
the objective function

S.(W) := R (W, D.(W))

T m
= Z ZL(yti, (we, i) + 7 (trace(WWT + EI)%>2 )

t=1 i=1

Moreover, we define the following function which formalizes the super-
vised step of the algorithm,

g-(W) := min{R.(V, Do(W)),: V e R™>T}

Since S;(W) = Ro(W, D.(W)) and D, (W) minimizes R.(W,-), we ob-
tain that
Se(WHD) < g (W) < 5. (). (23)
We begin by observing that S. has a unique minimizer. This is a
direct consequence of the following proposition.

Proposition 3. The function S; is strictly convex for every e > 0.

Proof. 1t suffices to show that the function
1 2
W — (trauce(VVVVT + 51)5)

is strictly convex. But this is simply a spectral function, that is, a func-
tion of the singular values of W. By [34, Sec. 3], strict convexity follows

2
directly from strict convexity of the real function o — (ZZ o2 + z-:) .

This function is strictly convex because it is the square of a positive
strictly convex function. O

We note that when € = 0, the function S; is regularized by the trace
norm squared which is not a strictly convex function. Thus, in many
cases of interest Sg may have multiple minimizers. For instance, this is
true if the loss function L is not strictly convex, which is the case with
SVMs.

Next, we show the following continuity property which underlies the
convergence of Algorithm 1.
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Lemma 2. The function gs is continuous for every & > 0.

Proof. We first show that the function G. : S‘fr 4+ — R defined as
G.(D) := min {RE(V, D):Ve RdXT}

is convex. Indeed, G, is the minimal value of T" separable regularization
problems with a common kernel function determined by D. For a proof
that the minimal value of a 2-norm regularization problem is convex in
the kernel, see [5, Lemma 2]. Since the domain of this function is open,
G, is also continuous (see [14, Sec. 4.1]).

In addition, the matrix-valued function W +— (WWT + eI )% is con-
tinuous. To see this, we recall the fact that the matrix-valued function
S S‘i — Z72 is continuous. Continuity of the matrix square root is
due to the fact that the square root function on the reals, t — t%, is
operator monotone — see e.g., [12, Sec. X.1].

Combining, we obtain that g. is continuous, as the composition of
continuous functions. O

Proof of Theorem 2. By inequality (23) the sequence {S.(W®) :
n € N} is nonincreasing and, since L is bounded from below, it is
bounded. As a consequence, as n — 00, Sg(W(”)) converges to a

number, which we denote by S.. We also deduce that the sequence
1
{trace (VV(”)W(”)T + 6[) ‘ine N} is bounded and hence so is the

sequence {W(”) : n € N}. Consequently there is a convergent subse-
quence {W () : ¢ € N}, whose limit we denote by w.

Since S, (WD) < g (W) < S (W), g (W) converges to
S.. Thus, by Lemma 2 and the continuity of S, gE(W) = SE(W). This
implies that W is a minimizer of R (-, D-(W)), because R (W, D.(W))
=S (W). N N

Moreover, recall that D.(W) is the minimizer of R.(W,-) subject
to the constraints in (12). Since the regularizer in R. is smooth, any
directional derivative of R. is the sum of its directional derivatives with
respect to W and D. Hence, (W, D.(WW)) is the minimizer of R..

We have shown that any convergent subsequence of {W(”) :n € N}
converges to the minimizer of R.. Since the sequence {W : n € N}
is bounded it follows that it converges to the minimizer as a whole. 0O

Proof of Theorem 3. Let {(Wy,,D., (W,)):n €N} be a limit-
ing subsequence of the minimizers of {R., : ¢ € N} and let (W, D)
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be its limit as n — oo. From the definition of S, it is clear that
min{S.(W) : W € R¥>*T} is a decreasing function of ¢ and converges
to & = min{Sy(W) : W € R*T} as ¢ — 0. Thus, S, (Wy,) — S.
Since S:(W) is continuous in both £ and W (see proof of Lemma 2),
we obtain that SO(W) =S. O

C Proof of Lemma 3

Lemma 3. Let P,N € R such that PTN = 0. Then ||P + Ny >
|Plltz- The equality is attained if and only if N = 0.

Proof. We use the fact that, for matrices A,B € SV, A = B implies
that traceAs > traceB2. This is true because the square root function

on the reals, t — t%, is operator monotone — see [12, Sec. V.1]. We
apply this fact to the matrices PTP+ NTN and NTN to obtain that

|P + Nl = trace((P + N)"(P + N))z = trace(PTP + NTN)2 >

trace(P' P)z = || P||s.

The equality is attained if and only if the spectra of PTP+ NTN and
PTP are equal, whence trace(N"N) =0, that is N =0. O
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