arXiv:0708.3048v2 [cs.CE] 26 Feb 2008

ldentifying Small Mean Reverting Portfolios

By Alexandre d’Aspremorit
February 26, 2008

Abstract

Given multivariate time series, we study the problem of fimigrportfolios with maximum
mean reversion while constraining the number of assetseisetiportfolios. We show that it
can be formulated as a sparse canonical correlation asalpsi study various algorithms to
solve the corresponding sparse generalized eigenvalliepns. After discussing penalized
parameter estimation procedures, we study the sparsitpsqredictability tradeoff and the
impact of predictability in various markets.

Keywords: Mean reversion, sparse estimation, convergence tradingyantum trading, covari-
ance selection.

1 Introduction

Mean reversion has received a significant amount of atteasa classic indicator of predictability
in financial markets and is sometimes apparent, for exampleguity excess returns over long
horizons. While mean reversion is easy to identify in uniat@rtime series, isolating portfolios of
assets exhibiting significant mean reversion is a much momgptex problem. Classic solutions
include cointegration or canonical correlation analysisich will be discussed in what follows.

One of the key shortcomings of these methods though is thah#an reverting portfolios they
identify are dense, i.e. they include every asset in the fiarees analyzed. For arbitrageurs, this
means that exploiting the corresponding statistical eaé opportunities involves considerable
transaction costs. From an econometric point of view, this also impacts itfiter pretability of
the resulting portfolio and the significance of the struatuelationships it highlights. Finally,
optimally mean reverting portfolios often behave like mo#d sometimes vary well inside bid-
ask spreads, hence do not form meaningful statisticalrag@topportunities.

Here, we would like to argue that seekiggprse portfolios instead, i.e. optimally mean re-
verting portfolios with a few assets, solves many of thesaas at once: fewer assets means less
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transaction costs and more interpretable results. Inipe|dhe tradeoff between mean reversion
and sparsity is often very favorable. Furthermore, pemgifor sparsity also makes sparse port-
folios vary in a wider price range, so the market inefficiesdhey highlight are more significant.

Remark that all statements we will make here on mean reveegply symmetrically tano-
mentum. Finding mean reverting portfolios using canonical catieh analysis means minimizing
predictability, while searching for portfolios with strgmomentum can also be done using canon-
ical correlation analysis, bynaximizing predictability. The numerical procedures involved are
identical.

Mean reversion has of course received a considerable arobattention in the literature, most
authors, such as Fama & French (1988), Poterba & Summer8)Y&8ong many others, using
it to model and test for predictability in excess returns.inBggration techniques (see Engle &
Granger (1987), and Alexander (1999) for a survey of apptioa in finance) are often used to
extract mean reverting portfolios from multivariate timeries. Early methods relied on a mix
of regression and Dickey & Fuller (1979) stationarity testslohansen (1988) type tests but it
was subsequently discovered that an earlier canonicahggzsition technique due to Box & Tiao
(1977) could be used to extract cointegrated vectors byrspky generalized eigenvalue problem
(see Bewley, Orden, Yang & Fisher (1994) for a more completeusgsion).

Several authors then focused on the optimal investmentgmolwyhen excess returns are mean
reverting, with Kim & Omberg (1996) and Campbell & Viceiradd9) or Wachter (2002) for ex-
ample obtaining closed-form solutions in some particudaes. Liu & Longstaff (2004) also study
the optimal investment problem in the presence of a “textbtinite horizon arbitrage opportunity,
modeled as a Brownian bridge, while Jurek & Yang (2006) sthdysame problem when the arbi-
trage horizon is indeterminate. Gatev, Goetzmann & Rouwestli2006) studied the performance
of pairs trading, using pairs of assets as classic exampktsuaturally mean-reverting portfolios.
Finally, the LTCM meltdown in 1998 focused a lot of attentiom the impact of leverage limits
and liquidity, see Grossman & Vila (1992) or Xiong (2001) éodiscussion.

Sparse estimation techniques in general and tipenalization approach we use here in partic-
ular have also received a lot of attention in various fornasiable selection using the LASSO (see
Tibshirani (1996)), sparse signal representation usisgshaursuit by Chen, Donoho & Saunders
(2001), compressed sensing (see Donoho & Tanner (2005) andeS & Tao (2005)) or covari-
ance selection (see Banerjee, Ghaoui & d’Aspremont (20@/g)te only a few examples. A recent
stream of works on the asymptotic consistency of these pgroes can be found in Meinshausen &
Yu (2007), Candes & Tao (2007), Banerjee et al. (2007), Yudnr&(2007) or Rothman, Bickel,
Levina & Zhu (2007) among others.

In this paper, we seek to adapt these results to the problesstimhating sparse (i.e. small)
mean reverting portfolios. Suppose tlsatis the value at time of an asseb; withi = 1,...,n
andt = 1,...,m, we form portfoliosP; of these assets with coefficients, and assume they
follow an Ornstein-Uhlenbeck process given by:

1=1

where Z; is a standard Brownian motion. Our objective here is to ma&enthe mean reversion
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coefficient\ of P, by adjusting the portfolio weights;, under the constraints thét|| = 1 and
that the cardinality of, i.e. the number of nonzero coefficientsanremains below a giveh > 0.

Our contribution here is twofold. First, we describe twoalthms for extracting sparse mean
reverting portfolios from multivariate time series. Oneb&sed on a simple greedy search on
the list of assets to include. The other uses semidefinigaatibn techniques to directly get good
solutions. Both algorithms use predictability in the sepidgox & Tiao (1977) as a proxy for mean
reversion in[(ll). Second, we show that penalized regressidrcovariance selection techniques
can be used as preprocessing steps to simultaneouslyztglarameter estimation and highlight
key dependence relationships in the data. We then studpéusity versus mean reversion tradeoff
in several markets, and examine the impact of portfolio ijstablility on market efficiency using
classic convergence trading strategies.

The paper is organized as follows. In Secfidbn 2, we brieflgltebe canonical decomposition
technique derived in Box & Tiao (1977). In Sectioh 3, we adapgse results and produce two
algorithms to extract small mean reverting portfolios fromltivariate data sets. In Sectiéh 4,
we then show how penalized regression and covariance iseléethniques can be used as pre-
processing tools to both stabilize estimation and isolatedependence relationships in the time
series. Finally, we present some empirical results in 8edi on U.S. swap rates and foreign
exchange markets.

2 Canonical decompositions

We briefly recall below the canonical decomposition techaiglerived in Box & Tiao (1977).
Here, we work in a discrete setting and assume that the adgeses ffollow a stationary vector
autoregressive process with:

Sy = Si1A+ Z, (2

whereS,_; is the lagged portfolio procesd, € R™*" and Z; is a vector of i.i.d. Gaussian noise
with zero mean and covarianée < S", independent ob,; ;. Without loss of generality, we can
assume that the asseétshave zero mean. The canonical analysis in Box & Tiao (197afjsts
follows. For simplicity, let us first suppose that= 1 in equation[(R), to get:

E[S?] = E[(Si-14)°] + E[Z7],

which can be rewritten as? = o2 ; + ¥. Box & Tiao (1977) measure theredictability of
stationary series by:

2
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v = 7 3)
The intuition behind this variance ratio is very simple: wheis small the variance of the noise
dominates that ob;_; and S, is almost pure noise, when it is large however,; dominates the
noise ands; is almost perfectly predictable. Throughout the paper, weuse this measure of
predictability as a proxy for the mean reversion paramatar (I). Consider now a portfolio
P, = S,z with weightsz € R", using [2) we know tha$,z = S;,_; Ax + Z;x, and we can measure



its predicability as:

B 2T ATT Az

v(@) = —pp—

wherel is the covariance matrix df;. Minimizing predictability is then equivalent to findingeh
minimum generalized eigenvaluesolving:

det(AI' — A'T'A) = 0. (4)

Assuming that" is positive definite, the portfolio with minimum predictéty will be given by
r = I'"'/2z, wherez is the eigenvector corresponding to the smallest eigeavafithe matrix:

[~12ATTAD Y2, (5)
We must now estimate the matrik Following Bewley et al. (1994), equatidn (2) can be written
Sy = Sy + Z,
wheres, is the least squares estimate®fwith S, = S,_; A and we get:
A= (ST,8,4)"" ST,8,. (6)

The Box & Tiao (1977) procedure then solves for the optimatfpbo by inserting this estimate
in the generalized eigenvalue problem above.

Box & Tiao procedure. Using the estimatd {6) i l5) and the stationarity%f the Box &
Tiao (1977) procedure finds linear combinations of the assetked in order of predictability by
computing the eigenvectors of the matrix:

(7)™ (578:) (sTs) ™ (7)

whereS, is the least squares estimate computed above. Figjure lagivwsample of a Box & Tiao
(1977) decomposition on U.S. swap rates and shows eigtfopostof swap rates with maturities
ranging from one to thirty years, ranked according to pradhitity. Table.l shows mean reversion
coefficient, volatility and the p-value associated with thean reversion coefficient. We see that
all mean reversion coefficients are significant at the 99%i lexcept for the last portfolio. For this
highly mean reverting portfolio, a mean reversion coeffitief 238 implies a half-life of about
one day, which explains the lack of significance on daily data

Bewley et al. (1994) show that the canonical decompositoimve and the maximum likelihood
decomposition in Johansen (1988) can both be formulatelnismtanner. We very briefly recall
their result below.



Number of swaps| 1 2 3 4 5 6 7 8
Mean reversion 0.58 8.61 16.48 3859 8455 174.82 184.83 238.11
P-value| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51
Volatility | 0.21 0.28 0.34 0.14 0.10 0.09 0.07 0.07

Table 1: Summary statistics for canonical U.S. swap paasolmean reversion coefficient, volatil-
ity and the p-value associated with the mean reversion caififor portfolio sizes ranging from
one to eight.

Johansen procedure. Following Bewley et al. (1994), the maximum likelihood peaitre for
estimating cointegrating vectors derived in Johansen§)1L88d Johansen (1991) can also be writ-
ten as a canonical decomposition a la Box & Tiao (1977). Hhengever, the canonical analysis
is performed on the first order differences of the sefieand their lagged valueS;_;. We can
rewrite equation(2) as:

AS; =QS1+ 7,

where) = A — 1. The basis of (potentially) cointegrating portfolios iethfound by solving the
following generalized eigenvalue problem:

MNSESi-1) — (ST AS,(ASFAS,)TASTS, 1) 8)

in the variable\ € R.

3 Sparse decomposition algorithms

In the previous section, we have seen that canonical decsitigys can be written as generalized
eigenvalue problems of the form:
det(AB—A) =0 9

in the variable\ € R, whereA, B € S* are symmetric matrices of dimensien Full generalized
eigenvalue decomposition problems are usually solvedjusiQZ decomposition. Here however,
we are only interested in extremal generalized eigenvalbgh can be written in variational
form as: 4
max x z

ML E) = Ty
In this section, we will seek to maximize this ratio while stmaining the cardinality of the (port-
folio) coefficient vectorr and solve instead:

maximize z? Az/x" Bx
subjectto Card(z) <k (10)
]| = 1,

wherek > 0 is a given constant an@ard(z) is the number of nonzero coefficientsiinThis will
compute a sparse portfolio with maximum predictability f@omentum), a similar problem can
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Figure 1. Box-Tiao decomposition on 100 days of U.S. swap data (in percent). The eight
canonical portfolios of swap rates with maturities randiran one to thirty years are ranked in
decreasing order of predictability. The mean reversiotffiooent ) is listed below each plot.



be formed to minimize it (and obtain a sparse portfolio witaximum mean reversion). This is
a hard combinatorial problem, in fact, Natarajan (1995n&hthat sparse generalized eigenvalue
problems are equivalent to subset selection, which is NB:h¥/e can't expect to get optimal
solutions and we discuss below two efficient techniques tgged approximate solutions.

3.1 Greedy search

Let us calll;, the support of the solution vectorgivenk > 0 in problem [(10):
Iy ={iel,n]: z; # 0},

by construction|I,| < k. We can build approximate solutions {0 (10) recursively:inWhen
k =1, we simply find/; as:
I, = argmax A;;/ By;.

1€[1,n]

Suppose now that we have a good approximate solution withatipet/, given by:

2T Ax

Tp = argmax ———
T )

{SEER"ZZ’[;ZO} xXr B[L’

wherel; is the complement of the sét. This can be solved as a generalized eigenvalue problem
of sizek. We seek to add one variable with indigx; to the set/,, to produce the largest increase
in predictability by scanning each of the remaining indices;. The indexi;,, is then given by:

whereJ; = I;; \ {i},

: 2T Ax
)41 = argmax max —_—
i€lf {z€R™: z ;,=0} 2T Bz’

which amounts to solving: — k) generalized eigenvalue problems of size 1. We then define:

Iivr = 1 U {igsr }y

and repeat the procedure uriti= n. Naturally, the optimal solutions of problein {10) might not
have increasing support sdisC I, 1, hence the solutions found by this recursive algorithm are
potentially far from optimal. However, the cost of this madhs relatively low: with each iteration
costingO(k*(n — k)), the complexity of computing solutions for all target calitiesk is O(n?).
This recursive procedure can also be repeated forward arkivbad to improve the quality of the
solution.

3.2 Semidefinite relaxation

An alternative to greedy search which has proved very efficd® sparse maximum eigenvalue
problems is to derive a convex relaxation of problen (10}hls section, we extend the techniques



of d’Aspremont, El Ghaoui, Jordan & Lanckriet (2007) to fardate a semidefinite relaxation for
sparse generalized eigenvalue problemkih (10):

maximize z? Az/x" Bx
subjectto Card(z) <k
]l =1,

with variablez € R". As in d’Aspremont et al. (2007), we can form an equivalemigpoam in
terms of the matrixX = zz” € S,;:

maximize Tr(AX)/Tr(BX)
subjectto Card(X) < k?

Tr(X) =1

X >0, Rank(X) =1,

in the variableX € S,. This program is equivalent to the first one: indeedXifs a solution to
the above problem, the = 0 andRank(X) = 1 mean that we must hau& = xz”, while
Tr(X) = 1 implies that||z|| = 1. Finally, if X = z2” thenCard(X) < k? is equivalent to
Card(z) < k.

Now, because for any vecterc R", Card(u) = ¢ implies|ju|; < ,/g|u||2, we can replace
the nonconvex constraitard(X) < k? by a weaker but convex constraiht| X|1 < k, using
the fact that|| X || = vaTz = 1 whenX = zz’ andTr(X) = 1. We then drop the rank
constraint to get the following relaxation ¢f (10):

maximize Tr(AX)/Tr(BX)
subjectto 17]X]1 <k
Tr(X) = 1
X =0,

(11)

which is a quasi-convex program in the variallle= S,. After the following change of variables:

X !
T Te(BX) © Tr(BX)

and rewrite[(111) as:
maximize Tr(AY)
subjectto 17Y[1 — k2 <0
Tr(Y)—2=0 (12)
Tr(BY)=1
Y =0,
which is a semidefinite program (SDP) in the varialfes S, andz € R, and can be solved using
standard SDP solvers such as SEDUMI by Sturm (1999) and Sy T®h, Todd & Tutuncu
(1999). The optimal value of problern_(12) will be an upper ldwn the optimal value of the

original problem[(1D). If the solution matriX has rank one, then the relaxatiortiight and both
optimal values are equal. Whdank(Y) > 1 at the optimum in[(12), we get an approximate
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solution to [10) using the rescaled leading eigenvectohefaptimal solution matrix” in (12).
The computational complexity of this relaxation is sigrafitly higher than that of the greedy
search algorithm i§3.1. On the other hand, because it is not restricted to isargaequences of
sparse portfolios, the performance of the solutions predus often higher too. Furthermore, the
dual objective value produces an upper bound on suboptim&dlumerical comparisons of both
techniques are detailed in Sectidn 5.

4 Parameter estimation

The canonical decomposition procedures detailed in Se2tall rely on simple estimates of both
the covariance matriX in (§) and the parameter matrikin the vector autoregressive model (6).
Of course, both estimates suffer from well-known stabiltyues and a classic remedy is to pe-
nalize the covariance estimation using, for example, aipialof the norm ofl". In this section,
we would like to argue that using ah penalty term to stabilize the estimation, in a procedure
known as covariance selection, simultaneously stabilizesestimate and helps isolate key id-
iosyncratic dependencies in the data. In particular, ¢amae selection clusters the input data in
several smaller groups of highly dependent variables amdrigh we can then search for mean
reverting (or momentum) portfolios. Covariance selectian then be viewed as a preprocessing
step for the sparse canonical decomposition techniquedeatetn Section 3. Similarly, penalized
regression techniques such as the LASSO by Tibshirani (1886 be used to produce stable,
structured estimates of the matrix parameten the VAR model[(2).

4.1 Covariance selection

Here, we first seek to estimate the covariance matiyy maximum likelihood. Following Demp-
ster (1972), we penalize the maximum-likelihood estinratmset a certain number of coefficients
in the inverse covariance matrix to zero, in a procedure knascovariance selection. Zeroes
in the inverse covariance matrix correspond to conditignablependent variables in the model
and this approach can be used to simultaneously obtain atrebtimate of the covariance matrix
while, perhaps more importantly, discoversigucturein the underlying graphical model (see Lau-
ritzen (1996) for a complete treatment). This tradeoff le#wlog-likelihood of the solution and
number of zeroes in its inverse (i.e. model structure) caiotmealized in the following problem:

max logdet X — Tr(XX) — pCard(X) (13)

in the variableX € S,, whereX € S, is the sample covariance matrXard(X) is the cardinality
of X, i.e. the number of nonzero coefficientsihandp > 0 is a parameter controlling the trade-
off between likelihood and structure.

Solving the penalized maximum likelihood estimation pesblin (13) both improves the sta-
bility of this estimation procedure by implicitly reducinige number of parameters and directly
highlights structure in the underlying model. Unforturgtehe cardinality penalty makes this
problem very hard to solve numerically. One solution depetbin d’Aspremont, Banerjee &



Figure 2: Left: conditional dependence network inferred from the pattérrecos in the inverse
swap covariance matriRight: same plot, using this time the penalized covariance estimih
penaltyp = .1 in the maximum likelihood estimation (114).

El Ghaoui (2006), Banerjee et al. (2007) or Friedman, Haftiébshirani (2007) is to relax the
Card(X) penalty and replace it by the (conveéx)norm of the coefficients ok to solve:

max logdet X — Tr(XX) — p e (14)

4,j=1

in the variableX € S". The penalty term involving the sum of absolute values ofehties of

X acts as a proxy for the cardinality: the functi@ijl |X;;| can be seen as the largest convex
lower bound onCard(X) on the hypercube, an argument used by Fazel, Hindi & Boyd4P00
for rank minimization. It is also often used in regressiod &ariable selection procedures, such
as the LASSO by Tibshirani (1996). Other permutation iraairestimators have been detailed in
Rothman et al. (2007) for example.

In a Gaussian model, zeroes in the inverse covariance npatiit to variables that are condi-
tionally independent, conditioned on all the remainingalales. This has a clear financial interpre-
tation: the inverse covariance matrix reflects indepeneleglationships between tidiosyncratic
components of asset price dynamics. In Figure 2, we plotehelting network of dependence, or
graphical model for U.S. swap rates. In this graph, varglp®des) are joined by a link if and
only if they are conditionally dependent. We plot the graghmodel inferred from the pattern of
zeros in the inverse sample swap covariance matrix (left)the same graph, using this time the
penalized covariance estimatel[inl(14) with penalty paramet .1 (right). The graph layout was
done using Cytoscape. Notice that in the penalized estjmaties are clustered by maturity and
the graph clearly reveals that swap rates are moving as a.curv
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4.2 Estimating structured VAR models

In this section, using similar techniques, we show how t@vec a sparse vector autoregressive
model from multivariate data.

Endogenous dependence models Here, we assume that the conditional dependence strudture o
the assets); is purelyendogenous, i.e. that the noise terms in the vector autoregressive hi@he
are i.i.d. with:

Sy = S A+ Z,

whereZ, ~ N(0, oI) for somes > 0. In this case, we must have:
I['=A"TA+ ol
sinceA” ® A has no unit eigenvalue (by stationarity), this means that:
Io=(1-AT® A")™ 1
whereA ® B is the Kronecker product of and B, which implies:
ATA=T1-0oT"".

We can always choosesmall enough so thdt-oI'~! = 0. This means that we can directly gét
as a matrix square root ¢f —oT'~!). Furthermore, if we pick! to be the Cholesky decomposition
of (I - oI'!), and if the graph of is chordal (i.e. has no cycles of length greater than thies) t
there is a permutation of the variablBssuch that the Cholesky decomposition/ff P7, and the
upper triangle ofPT' PT have the same pattern of zeroes (see Wermuth (1980) for ésanip
Figure[4, we plot two dependence networks, one chordal (eretf), one not (on the right). In
this case, the structure (pattern of zeroes) af the VAR model[(6) can be directly inferred from
that of the penalized covariance estimate.

Gilbert (1994,52.4) also shows that ifl satisfiesA” A = I — ¢I'"! then, barring numerical
cancellations imMT A, the graph of"~! is the intersection graph of so:

(T =0 = Apdy,; =0, forallk=1,...,n.

This means in particular that when the grapH'as disconnected, then the graph4fmust also

be disconnected along the same clusters of variablesdiandI" have identical block-diagonal
structure. Irg4.3, we will use this fact to show that when the graphi' @$ disconnected, optimally
mean reverting portfolios must be formed exclusively okéssvithin a single cluster of this graph.

Exogenous dependence modelsln the general case where the noise terms are correlatdd, wit
Z; ~ N(0,X) for a certain noise covarianég and the dependence structure is partly exogenous,
we need to estimate the parameter matridirectly from the data. In Sectidnd 2, we estimated the
matrix A in the vector autoregressive model (2) by regressingn S;_:

A= (ST ,8,4)"" ST,8,.
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Figure 3:Left: a chordal graphical model: no cycles of length greater thaget Right: a non-
chordal graphical model.

Here too, we can modify this estimation procedure in ordegdiba sparse model matrix. Our
aim is again to both stabilize the estimation and highlight Bependence relationships between
S; and S;_;. We replace the simple least-squares estimate above byadizggshone. We get the
columns ofA by solving:

a; = argmin HSng — St_ll’Hz + ’YHJJHl (15)

in the variabler € R", where the parameter> 0 controls sparsity. This is known as the LASSO
(see Tibshirani (1996)) and produces sparse least squatnestes.

4.3 Canonical decomposition with penalized estimation

We showed that covariance selection highlights networkkepEndence among assets, and that pe-
nalized regression could be used to estimate sparse mottatesal. WWe now show under which
conditions these results can be combined to extract infooma@n the support of the canonical
portfolios produced by the decompositions in Sedfion 2 ftbengraph structure of the covariance
matrix I' and of the model matrixl. Because both covariance selection and the lasso are substa
tially cheaper numerically than the sparse decomposiéohrtiques in Sectidd 3, our goal here is
to use these penalized estimation techniques as prepigédssls to narrow down the range of
assets over which we look for mean reversion.

In Sectior 2, we saw that the Box & Tiao (1977) decompositmreikample, could be formed
by solving the following generalized eigenvalue problem:

det(A\I' — ATT'A) =0,

12
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Figure 4:Left: a connected graphical modé&light: disconnected models.

wherel is the covariance matrix of the assétsand A is the model matrix in[(2). Suppose now
that our penalized estimates of the matrifeend A”’T" A have disconnected graphs with identical
clusters, i.e. have the same block diagonal structuree@i(h994, Th. 6.1) shows that the support
of the generalized eigenvectors of the gdit A”T" A} must be fully included in one of the clusters
of the graph of the inverse covarianice'. In other words, if the graph of the penalized estimate of
't and A are disconnected along the same clusters, then optimaikedittable (or predictable)
portfolios must be formed exclusively of assets in a singlister.

This suggests a simple procedure for finding small mean tiegeportfolios in very large
data sets. We first estimate a sparse inverse covariance imasolving the covariance selection
problem in [14), setting large enough so that the graphof! is split into sufficiently small
clusters. We then check if either the graph is chordal or ifglieed estimates ofi share some
clusters with the graph df—!. After this preprocessing step, we use the algorithms ofi@&@
to search these (much smaller) clusters of variables famgptmean reverting (or momentum)
portfolios.

5 Empirical results
In this section, we first compare the performance of the #lyos described in Sectidn 3. We then

study the mean reversion versus sparsity tradeoff on vafinancial instruments. Finally, we test
the performance of convergence trading strategies onespagan reverting portfolios.
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5.1 Numerical performance

In Figurell we plotted the result of the Box-Tiao decompositin U.S. swap rate data (see details
below). Each portfolio is @ense linear combination of swap rates, ranked in decreasingrafile
predictability. In Figuré B, we apply the greedy search atgm detailed in Sectionl 3 to the same
data set and plot theparse portfolio processes for each target number of assets. Bduiat of
Figure[6 lists the numbeér of nonzero coefficients of the corresponding portfolio atsdmean
reversion coefficiend. Figure[5 then compares the performance of the greedy salgotithm
versus the semidefinite relaxation derived in Sedtion 3. l@nléft, for each algorithm, we plot
the mean reversion coefficientversus portfolio cardinality (number of nonzero coeffitgnWe
observe on this example that while the semidefinite relaradbes produce better results in some
instances, the greedy search is more reliable. Of coursieglgorithms recover the same solutions
when the target cardinality is setto= 1 or £k = n. On the right, we plot CPU time (in seconds)
as a function of the total number of assets to search. As & pelachmark, producing 100 sparse
mean reverting portfolios for each target cardinality begw 1 and 100 took one minute and forty
seconds.
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Mean Reversion
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CPU time (in seconds)

O Il Il Il Il Il Il 10_2 Il Il Il Il
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Cardinality Total number of assets

Figure 5: Left: Mean reversion coefficient versus portfolio cardinality (number of nonzero co-
efficients) using the greedy search (circles, solid ling) Hre semidefinite relaxation (squares)
algorithms on U.S. swap rate dafight: CPU time (in seconds) versus total number of assets
to compute a full set of sparse portfolios (with cardinafi@yging from 1 ton) using the greedy
search algorithm.

5.2 Mean reversion versus sparsity

In this section, we study the mean reversion versus spdraigoff on several data sets. We also
test the persistence of this mean reversion out of sample.
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Figure 6: Sparse canonical decomposition on 100 days of $W8&p rate data (in percent). The
number of nonzero coefficients in each portfolio vectorsgell as: on top of each subplot, while
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Swap rates. In FigurelT we compare in and out of sample estimates of themes@rsion versus
cardinality tradeoff. We study U.S. swap rate data for maasr1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y and
30Y from 1998 until 2005. We first use the greedy algorithm e€t®n[3 to compute optimally
mean reverting portfolios of increasing cardinality fané windows of 200 days and repeat the
procedure every 50 days. We plot average mean reversionsveasdinality in Figuré&]7 on the
left. We then repeat the procedure, this time computing dbé ¢f sample) mean reversion in the
200 days time window immediately following our sample ansbgblot average mean reversion
versus cardinality. In Figuif€ 7 on the right, we plot the didample portfolio price range (spread
between min. and max. in basis points) versus cardinalitynger of nonzero coefficients) on the
same U.S. swap rate data. Table 2 shows the portfolio cotipo$ir each target cardinality.

1 2 3 4 5 6 7 8

1Y 0 0 0 -0.041 -0.037 0.036 -0.013 0.001

2Y 0 0 0 0 0 0 -0.102 0.117

3Y 0 0 -0.288 0.433 0.419 -0.437 0.547 -0.495

4Y 0 -0.714 0.806 -0.803 -0.802 0.809 -0.767 0.702

5Y | 1.000 0.700 -0.517 0.408 0.424 -0.389 0.317 -0.427

Y 0 0 0 0 0 0 0 0.219
10Y 0 0 0 0 0 -0.031 0.025 -0.130
30Y 0 0 0 0 -0.007 0.016 -0.008 0.014

Table 2: Composition of optimal swap portfolios for varidasyet cardinalities.

Foreign exchange rates. We study the following U.S. dollar exchange rates: ArgemtiAus-
tralia, Brazil, Canada, Chile, China, Colombia, Czech RdéipuEgypt, Eurozone, Finland, Hong
Kong, Hungary, India, Indonesia, Israel, Japan, Jordamdft,Latvia, Lithuania, Malaysia, Mex-
ico, Morocco, New Zealand, Norway, Pakistan, Papua NG, ,A&hiippines, Poland, Romania,
Russia, Saudi Arabia, Singapore, South Africa, South KoBalanka, Switzerland, Taiwan,
Thailand, Turkey, United Kingdom, Venezuela, from April@0until April 2007. Note that ex-
change rates are quoted with four digits of accuracy (pi)sizith bid-ask spreads around005
for key rates.

After forming the sample covariance matbixof these rates, we solve the covariance selection
problem in [14). This penalized maximum likelihood estimatproblem isolates a cluster of 14
rates and we plot the corresponding graph of conditionahgamces in Figurgel8. For these 14
rates, we then study the impact of penalized estimationeohthtriced” and A on out of sample
mean reversion. In Figufe 9, we plot out of sample mean rerecoefficient) versus portfolio
cardinality, on 14 rates selected by covariance selectibime sparse canonical decomposition
was performed on both unpenalized estimates and penalizesl oThe covariance matrix was
estimated by solving the covariance selection problemid#) p = 0.01 and the matrixA in (2)
was estimated by solving problein_{15) with the penaltyet to zero ou20% of the regression
coefficients.
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We notice in Figurgl9 that penalization has a double impacdt,Ehe fact that sparse portfolios
have a higher out of sample mean reversion than dense oness rtied penalizing for sparsity
helps prediction. Second, penalized estimatds afid A also produce higher out of sample mean
reversion than unpenalized ones. In Figure 9 on the rightpMeportfolio price range versus
cardinality and notice that here too sparse portfolios lzesignificantly broader range of variation
than dense ones.

5.3 Convergence trading

Here, we measure the performance of the convergence trattatggies detailed in the appendix.
In Figure[10 we plot average out of sample sharpe ratio versttfolio cardinality on a 50 days

(out of sample) time window immediately following the 100ydaover which we estimate the
process parameters. Somewhat predictably in the verydligus. swap markets, we notice that
while out of sample Sharpe ratios look very promising intfaoless markets, even minuscule
transaction costs (a bid-ask spread of 1bp) are sufficienbtapletely neutralize these market
inefficiencies.

6 Conclusion

We have derived two simple algorithms for extracting spéree small) mean reverting portfo-
lios from multivariate time series by solving a penalizedsi@n of the canonical decomposition
technique in Box & Tiao (1977). Empirical results suggestt tthese small portfolios present a
double advantage over their original dense counterpapatsgy means lower transaction costs
and better interpretability, it also improved out-of-sdenpredictability in the markets studied in
Sectiorl 5. Several important issues remain open at thig.gainst, it would be important to show
consistency of the variable selection procedure: assumegnow a priori that only a few vari-
ables have economic significance (i.e. should appear inghmal portfolio), can we prove that
the sparse canonical decomposition will recover them? Y¥&rgnt consistency results by Amini
& Wainwright (2008) on the sparse principal component asialyelaxation in d’Aspremont et al.
(2007) seem to suggest that this is likely, at least for senmpbdels. Second, while the dual of the
semidefinite relaxation in (11) provides a bound on subagiftyn we currently have no procedure
for deriving simple bounds of this type for the greedy altfor in Section 3.1.
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Appendix

In the previous sections, we showed how to extract small meaarting (or momentum) portfolios
from multivariate asset time series. In this section we m&sthat we have identified such a mean
reverting portfolio and model its dynamics given by:

In this section, we detail how to optimally trade these @it under various assumptions re-
garding market friction and risk-management constrals begin by quickly recalling results on
estimating the Ornstein-Uhlenbeck dynamicd.in (16).

Estimating Ornstein-Uhlenbeck processes

By explicitly integrating the proces® in (1) over a time incremenkt¢ we get:
t
P=P+e™(P_pn—P)+o / AeDdz,, (17)
At

which means that we can estimatando by simply regressing’; on P,_; and a constant. With

t 1— 6—2)\At
/ A AZ, ~ | ———— N(0,1),

we get the following estimators for the parameterg’of

A
BN 1 ZN ( )(Pt 1—M)
A = —1
At g(z (B (P, m)
o = T B 0

whereAt is the time interval between timeésndt — 1. The expression in(17) also allows us to
compute thénalf-life of a market shock o®’; as:

_ log2
==

which is a more intuitive measure of the magnitude of thefpliots mean reversion.

(18)
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Utility maximization in frictionless markets

Suppose now that an agent invests in an aBsahd in a riskless bon#; following:
dB; = rBdt,
the wealthlV; of this agent will follow:
AW, = NydP, + (W, — N, P,)rdt.
If P, follows a mean reverting process given byl(16), this is also:
dW; = (r(Wy — NiP,) + A(P — P,)Ny)dt + NyodZ;.
If we write the value function:

V(Wt, Pt, t) = Imax Et [e_ﬁ(T_t)U(Wt)} y

Ny

the H.J.B. equation for this problem can be written:

v . - ov _ oV

BV = max o5 AR = B) + oo (r(We = NeB) + AP = PYNy) + -
10V , 10V  , 1V _,,
Toap” Taapow ™ TaawE Y

Maximizing in IV, yields the following expression for the number of sharetedptimal portfolio:

VoW
02V /oW 20?

82V JOPOW

N 92V | OW?2

()\(P —PB)—1rP) - (19)

Jurek & Yang (2006) solve this equation explicitly foi(z) = logz andU(z) = z'77/(1 — ~)
and we recover in particular the classic expression:

in the log-utility case.

Leverage constraints

Suppose now that the portfolio is subject to fund withdrawnsd that the total wealth evolves
according to:
dW =dIl + dF

wheredll = N,dP, + (W, — N, P,)rdt anddF represents fund flows, with:
dF = fdll + o;dZ>”
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WhereZt@) is a Brownian motion (independent &f). Jurek & Yang (2006) show that the optimal
portfolio allocation can also be computed explicitly in presence of fund flows, with:

_)\(p—Pt)—TPt 1 .
o () i

in the log-utility case. Note that the constghtan also be interpreted in terms of leverage limits.
In steady state, we have:
2

T2\
which means that the leveradg itself is normally distributed. If we assume for simplicttyat

P =0, given the fund flow parametégr, the leverage will remain below the levél given by:

_alA )
M= (14 f)ov2x (20)

with confidence leveN («), whereN (z) is the Gaussian CDF. The bound on leverdgean thus
be seen as an alternate way of identifying or specifyingtined flow constanf in order to manage
capital outflow risks.
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Figure 7:Left: mean reversion coefficientversus portfolio cardinality (number of nonzero coef-
ficients), in sample (blue circles) and out of sample (blapkases) on U.S. swap&ight: out of
sample portfolio price range (in basis points) versus caldy (number of nonzero coefficients)
on U.S. swap rate data. The dashed lines are at plus and miewstandard deviation.

Figure 8: Graph of conditional covariance among a clustdd.&. dollar exchange rates. Posi-
tive dependencies are plotted as green links, negativeinomed, while the thickness reflects the
magnitude of the covariance.
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Figure 9: Left: out of sample mean reversion coefficient versus portfolidioality (number of
nonzero coefficients), on 14 U.S. dollar exchange ratedasied by covariance selection. The
sparse canonical decomposition was performed on both afiped estimates (black squares) and
penalized ones (blue circledRight: out of sample portfolio price range (in percent) versusieard
nality. The dashed lines are at plus and minus one standsiatioa.
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Figure 10: Left: average out of sample sharpe ratio versus portfolio caityimran U.S. swaps.
Right: idem, with a bid-ask spread of 1bp. The dashed lines are atgrld minus one standard

deviation.
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