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Abstract

Given multivariate time series, we study the problem of forming portfolios with maximum
mean reversion while constraining the number of assets in these portfolios. We show that it
can be formulated as a sparse canonical correlation analysis and study various algorithms to
solve the corresponding sparse generalized eigenvalue problems. After discussing penalized
parameter estimation procedures, we study the sparsity versus predictability tradeoff and the
impact of predictability in various markets.

Keywords: Mean reversion, sparse estimation, convergence trading, momentum trading, covari-
ance selection.

1 Introduction

Mean reversion has received a significant amount of attention as a classic indicator of predictability
in financial markets and is sometimes apparent, for example,in equity excess returns over long
horizons. While mean reversion is easy to identify in univariate time series, isolating portfolios of
assets exhibiting significant mean reversion is a much more complex problem. Classic solutions
include cointegration or canonical correlation analysis,which will be discussed in what follows.

One of the key shortcomings of these methods though is that the mean reverting portfolios they
identify are dense, i.e. they include every asset in the timeseries analyzed. For arbitrageurs, this
means that exploiting the corresponding statistical arbitrage opportunities involves considerable
transaction costs. From an econometric point of view, this also impacts theinterpretability of
the resulting portfolio and the significance of the structural relationships it highlights. Finally,
optimally mean reverting portfolios often behave like noise and sometimes vary well inside bid-
ask spreads, hence do not form meaningful statistical arbitrage opportunities.

Here, we would like to argue that seekingsparse portfolios instead, i.e. optimally mean re-
verting portfolios with a few assets, solves many of these issues at once: fewer assets means less
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transaction costs and more interpretable results. In practice, the tradeoff between mean reversion
and sparsity is often very favorable. Furthermore, penalizing for sparsity also makes sparse port-
folios vary in a wider price range, so the market inefficiencies they highlight are more significant.

Remark that all statements we will make here on mean reversion apply symmetrically tomo-
mentum. Finding mean reverting portfolios using canonical correlation analysis means minimizing
predictability, while searching for portfolios with strong momentum can also be done using canon-
ical correlation analysis, bymaximizing predictability. The numerical procedures involved are
identical.

Mean reversion has of course received a considerable amountof attention in the literature, most
authors, such as Fama & French (1988), Poterba & Summers (1988) among many others, using
it to model and test for predictability in excess returns. Cointegration techniques (see Engle &
Granger (1987), and Alexander (1999) for a survey of applications in finance) are often used to
extract mean reverting portfolios from multivariate time series. Early methods relied on a mix
of regression and Dickey & Fuller (1979) stationarity testsor Johansen (1988) type tests but it
was subsequently discovered that an earlier canonical decomposition technique due to Box & Tiao
(1977) could be used to extract cointegrated vectors by solving a generalized eigenvalue problem
(see Bewley, Orden, Yang & Fisher (1994) for a more complete discussion).

Several authors then focused on the optimal investment problem when excess returns are mean
reverting, with Kim & Omberg (1996) and Campbell & Viceira (1999) or Wachter (2002) for ex-
ample obtaining closed-form solutions in some particular cases. Liu & Longstaff (2004) also study
the optimal investment problem in the presence of a “textbook” finite horizon arbitrage opportunity,
modeled as a Brownian bridge, while Jurek & Yang (2006) studythis same problem when the arbi-
trage horizon is indeterminate. Gatev, Goetzmann & Rouwenhorst (2006) studied the performance
of pairs trading, using pairs of assets as classic examples of structurally mean-reverting portfolios.
Finally, the LTCM meltdown in 1998 focused a lot of attentionon the impact of leverage limits
and liquidity, see Grossman & Vila (1992) or Xiong (2001) fora discussion.

Sparse estimation techniques in general and theℓ1 penalization approach we use here in partic-
ular have also received a lot of attention in various forms: variable selection using the LASSO (see
Tibshirani (1996)), sparse signal representation using basis pursuit by Chen, Donoho & Saunders
(2001), compressed sensing (see Donoho & Tanner (2005) and Candès & Tao (2005)) or covari-
ance selection (see Banerjee, Ghaoui & d’Aspremont (2007)), to cite only a few examples. A recent
stream of works on the asymptotic consistency of these procedures can be found in Meinshausen &
Yu (2007), Candes & Tao (2007), Banerjee et al. (2007), Yuan &Lin (2007) or Rothman, Bickel,
Levina & Zhu (2007) among others.

In this paper, we seek to adapt these results to the problem ofestimating sparse (i.e. small)
mean reverting portfolios. Suppose thatSti is the value at timet of an assetSi with i = 1, . . . , n
and t = 1, . . . , m, we form portfoliosPt of these assets with coefficientsxi, and assume they
follow an Ornstein-Uhlenbeck process given by:

dPt = λ(P̄ − Pt)dt + σdZt with Pt =
n
∑

i=1

xiSti (1)

whereZt is a standard Brownian motion. Our objective here is to maximize the mean reversion
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coefficientλ of Pt by adjusting the portfolio weightsxi, under the constraints that‖x‖ = 1 and
that the cardinality ofx, i.e. the number of nonzero coefficients inx, remains below a givenk > 0.

Our contribution here is twofold. First, we describe two algorithms for extracting sparse mean
reverting portfolios from multivariate time series. One isbased on a simple greedy search on
the list of assets to include. The other uses semidefinite relaxation techniques to directly get good
solutions. Both algorithms use predictability in the senseof Box & Tiao (1977) as a proxy for mean
reversion in (1). Second, we show that penalized regressionand covariance selection techniques
can be used as preprocessing steps to simultaneously stabilize parameter estimation and highlight
key dependence relationships in the data. We then study the sparsity versus mean reversion tradeoff
in several markets, and examine the impact of portfolio predictability on market efficiency using
classic convergence trading strategies.

The paper is organized as follows. In Section 2, we briefly recall the canonical decomposition
technique derived in Box & Tiao (1977). In Section 3, we adaptthese results and produce two
algorithms to extract small mean reverting portfolios frommultivariate data sets. In Section 4,
we then show how penalized regression and covariance selection techniques can be used as pre-
processing tools to both stabilize estimation and isolate key dependence relationships in the time
series. Finally, we present some empirical results in Section 5 on U.S. swap rates and foreign
exchange markets.

2 Canonical decompositions

We briefly recall below the canonical decomposition technique derived in Box & Tiao (1977).
Here, we work in a discrete setting and assume that the asset prices follow a stationary vector
autoregressive process with:

St = St−1A + Zt, (2)

whereSt−1 is the lagged portfolio process,A ∈ Rn×n andZt is a vector of i.i.d. Gaussian noise
with zero mean and covarianceΣ ∈ Sn, independent ofSt−1. Without loss of generality, we can
assume that the assetsSt have zero mean. The canonical analysis in Box & Tiao (1977) starts as
follows. For simplicity, let us first suppose thatn = 1 in equation (2), to get:

E[S2
t ] = E[(St−1A)2] + E [Z2

t ],

which can be rewritten asσ2
t = σ2

t−1 + Σ. Box & Tiao (1977) measure thepredictability of
stationary series by:

ν =
σ2

t−1

σ2
t

. (3)

The intuition behind this variance ratio is very simple: when it is small the variance of the noise
dominates that ofSt−1 andSt is almost pure noise, when it is large however,St−1 dominates the
noise andSt is almost perfectly predictable. Throughout the paper, we will use this measure of
predictability as a proxy for the mean reversion parameterλ in (1). Consider now a portfolio
Pt = Stx with weightsx ∈ Rn, using (2) we know thatStx = St−1Ax + Ztx, and we can measure
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its predicability as:

ν(x) =
xT AT ΓAx

xT Γx
,

whereΓ is the covariance matrix ofSt. Minimizing predictability is then equivalent to finding the
minimum generalized eigenvalueλ solving:

det(λΓ − AT ΓA) = 0. (4)

Assuming thatΓ is positive definite, the portfolio with minimum predictability will be given by
x = Γ−1/2z, wherez is the eigenvector corresponding to the smallest eigenvalue of the matrix:

Γ−1/2AT ΓAΓ−1/2. (5)

We must now estimate the matrixA. Following Bewley et al. (1994), equation (2) can be written:

St = Ŝt + Ẑt,

whereŜt is the least squares estimate ofSt with Ŝt = St−1Â and we get:

Â =
(

ST
t−1St−1

)−1
ST

t−1St. (6)

The Box & Tiao (1977) procedure then solves for the optimal portfolio by inserting this estimate
in the generalized eigenvalue problem above.

Box & Tiao procedure. Using the estimate (6) in (5) and the stationarity ofSt, the Box &
Tiao (1977) procedure finds linear combinations of the assets ranked in order of predictability by
computing the eigenvectors of the matrix:

(

ST
t St

)−1/2
(

ŜT
t Ŝt

)

(

ST
t St

)−1/2
(7)

whereŜt is the least squares estimate computed above. Figure 1 givesan example of a Box & Tiao
(1977) decomposition on U.S. swap rates and shows eight portfolios of swap rates with maturities
ranging from one to thirty years, ranked according to predictability. Table 1 shows mean reversion
coefficient, volatility and the p-value associated with themean reversion coefficient. We see that
all mean reversion coefficients are significant at the 99% level except for the last portfolio. For this
highly mean reverting portfolio, a mean reversion coefficient of 238 implies a half-life of about
one day, which explains the lack of significance on daily data.

Bewley et al. (1994) show that the canonical decomposition above and the maximum likelihood
decomposition in Johansen (1988) can both be formulated in this manner. We very briefly recall
their result below.
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Number of swaps: 1 2 3 4 5 6 7 8
Mean reversion 0.58 8.61 16.48 38.59 84.55 174.82 184.83 238.11

P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51
Volatility 0.21 0.28 0.34 0.14 0.10 0.09 0.07 0.07

Table 1: Summary statistics for canonical U.S. swap portfolios: mean reversion coefficient, volatil-
ity and the p-value associated with the mean reversion coefficient for portfolio sizes ranging from
one to eight.

Johansen procedure. Following Bewley et al. (1994), the maximum likelihood procedure for
estimating cointegrating vectors derived in Johansen (1988) and Johansen (1991) can also be writ-
ten as a canonical decomposition à la Box & Tiao (1977). Herehowever, the canonical analysis
is performed on the first order differences of the seriesSt and their lagged valuesSt−1. We can
rewrite equation (2) as:

∆St = QSt−1 + Zt

whereQ = A − I. The basis of (potentially) cointegrating portfolios is then found by solving the
following generalized eigenvalue problem:

λ(ST
t−1St−1) − (ST

t−1∆St(∆ST
t ∆St)

−1∆ST
t St−1) (8)

in the variableλ ∈ R.

3 Sparse decomposition algorithms

In the previous section, we have seen that canonical decompositions can be written as generalized
eigenvalue problems of the form:

det(λB − A) = 0 (9)

in the variableλ ∈ R, whereA, B ∈ Sn are symmetric matrices of dimensionn. Full generalized
eigenvalue decomposition problems are usually solved using a QZ decomposition. Here however,
we are only interested in extremal generalized eigenvalues, which can be written in variational
form as:

λmax(A, B) = max
x∈Rn

xT Ax

xT Bx
.

In this section, we will seek to maximize this ratio while constraining the cardinality of the (port-
folio) coefficient vectorx and solve instead:

maximize xT Ax/xT Bx
subject to Card(x) ≤ k

‖x‖ = 1,
(10)

wherek > 0 is a given constant andCard(x) is the number of nonzero coefficients inx. This will
compute a sparse portfolio with maximum predictability (ormomentum), a similar problem can
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Figure 1: Box-Tiao decomposition on 100 days of U.S. swap rate data (in percent). The eight
canonical portfolios of swap rates with maturities rangingfrom one to thirty years are ranked in
decreasing order of predictability. The mean reversion coefficient λ is listed below each plot.
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be formed to minimize it (and obtain a sparse portfolio with maximum mean reversion). This is
a hard combinatorial problem, in fact, Natarajan (1995) shows that sparse generalized eigenvalue
problems are equivalent to subset selection, which is NP-hard. We can’t expect to get optimal
solutions and we discuss below two efficient techniques to get good approximate solutions.

3.1 Greedy search

Let us callIk the support of the solution vectorx givenk > 0 in problem (10):

Ik = {i ∈ [1, n] : xi 6= 0},

by construction|Ik| ≤ k. We can build approximate solutions to (10) recursively ink. When
k = 1, we simply findI1 as:

I1 = argmax
i∈[1,n]

Aii/Bii.

Suppose now that we have a good approximate solution with support setIk given by:

xk = argmax
{x∈Rn: xIc

k
=0}

xT Ax

xT Bx
,

whereIc
k is the complement of the setIk. This can be solved as a generalized eigenvalue problem

of sizek. We seek to add one variable with indexik+1 to the setIk to produce the largest increase
in predictability by scanning each of the remaining indicesin Ic

k. The indexik+1 is then given by:

ik+1 = argmax
i∈Ic

k

max
{x∈Rn: xJi

=0}

xT Ax

xT Bx
, whereJi = Ic

k \ {i},

which amounts to solving(n − k) generalized eigenvalue problems of sizek + 1. We then define:

Ik+1 = Ik ∪ {ik+1},

and repeat the procedure untilk = n. Naturally, the optimal solutions of problem (10) might not
have increasing support setsIk ⊂ Ik+1, hence the solutions found by this recursive algorithm are
potentially far from optimal. However, the cost of this method is relatively low: with each iteration
costingO(k2(n−k)), the complexity of computing solutions for all target cardinalitiesk is O(n4).
This recursive procedure can also be repeated forward and backward to improve the quality of the
solution.

3.2 Semidefinite relaxation

An alternative to greedy search which has proved very efficient on sparse maximum eigenvalue
problems is to derive a convex relaxation of problem (10). Inthis section, we extend the techniques
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of d’Aspremont, El Ghaoui, Jordan & Lanckriet (2007) to formulate a semidefinite relaxation for
sparse generalized eigenvalue problems in (10):

maximize xT Ax/xT Bx
subject to Card(x) ≤ k

‖x‖ = 1,

with variablex ∈ Rn. As in d’Aspremont et al. (2007), we can form an equivalent program in
terms of the matrixX = xxT ∈ Sn:

maximize Tr(AX)/Tr(BX)
subject to Card(X) ≤ k2

Tr(X) = 1
X � 0, Rank(X) = 1,

in the variableX ∈ Sn. This program is equivalent to the first one: indeed, ifX is a solution to
the above problem, thenX � 0 andRank(X) = 1 mean that we must haveX = xxT , while
Tr(X) = 1 implies that‖x‖ = 1. Finally, if X = xxT thenCard(X) ≤ k2 is equivalent to
Card(x) ≤ k.

Now, because for any vectoru ∈ Rn, Card(u) = q implies‖u‖1 ≤ √
q‖u‖2, we can replace

the nonconvex constraintCard(X) ≤ k2 by a weaker but convex constraint1
T |X|1 ≤ k, using

the fact that‖X‖F =
√

xT x = 1 whenX = xxT andTr(X) = 1. We then drop the rank
constraint to get the following relaxation of (10):

maximize Tr(AX)/Tr(BX)
subject to 1

T |X|1 ≤ k
Tr(X) = 1
X � 0,

(11)

which is a quasi-convex program in the variableX ∈ Sn. After the following change of variables:

Y =
X

Tr(BX)
, z =

1

Tr(BX)
,

and rewrite (11) as:
maximize Tr(AY )
subject to 1

T |Y |1 − kz ≤ 0
Tr(Y ) − z = 0
Tr(BY ) = 1
Y � 0,

(12)

which is a semidefinite program (SDP) in the variablesY ∈ Sn andz ∈ R+ and can be solved using
standard SDP solvers such as SEDUMI by Sturm (1999) and SDPT3by Toh, Todd & Tutuncu
(1999). The optimal value of problem (12) will be an upper bound on the optimal value of the
original problem (10). If the solution matrixY has rank one, then the relaxation istight and both
optimal values are equal. WhenRank(Y ) > 1 at the optimum in (12), we get an approximate
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solution to (10) using the rescaled leading eigenvector of the optimal solution matrixY in (12).
The computational complexity of this relaxation is significantly higher than that of the greedy
search algorithm in§3.1. On the other hand, because it is not restricted to increasing sequences of
sparse portfolios, the performance of the solutions produced is often higher too. Furthermore, the
dual objective value produces an upper bound on suboptimality. Numerical comparisons of both
techniques are detailed in Section 5.

4 Parameter estimation

The canonical decomposition procedures detailed in Section 2 all rely on simple estimates of both
the covariance matrixΓ in (5) and the parameter matrixA in the vector autoregressive model (6).
Of course, both estimates suffer from well-known stabilityissues and a classic remedy is to pe-
nalize the covariance estimation using, for example, a multiple of the norm ofΓ. In this section,
we would like to argue that using anℓ1 penalty term to stabilize the estimation, in a procedure
known as covariance selection, simultaneously stabilizesthe estimate and helps isolate key id-
iosyncratic dependencies in the data. In particular, covariance selection clusters the input data in
several smaller groups of highly dependent variables amongwhich we can then search for mean
reverting (or momentum) portfolios. Covariance selectioncan then be viewed as a preprocessing
step for the sparse canonical decomposition techniques detailed in Section 3. Similarly, penalized
regression techniques such as the LASSO by Tibshirani (1996) can be used to produce stable,
structured estimates of the matrix parameterA in the VAR model (2).

4.1 Covariance selection

Here, we first seek to estimate the covariance matrixΓ by maximum likelihood. Following Demp-
ster (1972), we penalize the maximum-likelihood estimation to set a certain number of coefficients
in the inverse covariance matrix to zero, in a procedure known ascovariance selection. Zeroes
in the inverse covariance matrix correspond to conditionally independent variables in the model
and this approach can be used to simultaneously obtain a robust estimate of the covariance matrix
while, perhaps more importantly, discoveringstructure in the underlying graphical model (see Lau-
ritzen (1996) for a complete treatment). This tradeoff between log-likelihood of the solution and
number of zeroes in its inverse (i.e. model structure) can beformalized in the following problem:

max
X

log det X − Tr(ΣX) − ρCard(X) (13)

in the variableX ∈ Sn, whereΣ ∈ Sn is the sample covariance matrix,Card(X) is the cardinality
of X, i.e. the number of nonzero coefficients inX andρ > 0 is a parameter controlling the trade-
off between likelihood and structure.

Solving the penalized maximum likelihood estimation problem in (13) both improves the sta-
bility of this estimation procedure by implicitly reducingthe number of parameters and directly
highlights structure in the underlying model. Unfortunately, the cardinality penalty makes this
problem very hard to solve numerically. One solution developed in d’Aspremont, Banerjee &
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Figure 2: Left: conditional dependence network inferred from the pattern of zeros in the inverse
swap covariance matrix.Right: same plot, using this time the penalized covariance estimate with
penaltyρ = .1 in the maximum likelihood estimation (14).

El Ghaoui (2006), Banerjee et al. (2007) or Friedman, Hastie& Tibshirani (2007) is to relax the
Card(X) penalty and replace it by the (convex)ℓ1 norm of the coefficients ofX to solve:

max
X

log det X − Tr(ΣX) − ρ
n
∑

i,j=1

|Xij| (14)

in the variableX ∈ Sn. The penalty term involving the sum of absolute values of theentries of
X acts as a proxy for the cardinality: the function

∑n
i,j=1 |Xij| can be seen as the largest convex

lower bound onCard(X) on the hypercube, an argument used by Fazel, Hindi & Boyd (2001)
for rank minimization. It is also often used in regression and variable selection procedures, such
as the LASSO by Tibshirani (1996). Other permutation invariant estimators have been detailed in
Rothman et al. (2007) for example.

In a Gaussian model, zeroes in the inverse covariance matrixpoint to variables that are condi-
tionally independent, conditioned on all the remaining variables. This has a clear financial interpre-
tation: the inverse covariance matrix reflects independence relationships between theidiosyncratic
components of asset price dynamics. In Figure 2, we plot the resulting network of dependence, or
graphical model for U.S. swap rates. In this graph, variables (nodes) are joined by a link if and
only if they are conditionally dependent. We plot the graphical model inferred from the pattern of
zeros in the inverse sample swap covariance matrix (left) and the same graph, using this time the
penalized covariance estimate in (14) with penalty parameterρ = .1 (right). The graph layout was
done using Cytoscape. Notice that in the penalized estimate, rates are clustered by maturity and
the graph clearly reveals that swap rates are moving as a curve.
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4.2 Estimating structured VAR models

In this section, using similar techniques, we show how to recover a sparse vector autoregressive
model from multivariate data.

Endogenous dependence models.Here, we assume that the conditional dependence structure of
the assetsSt is purelyendogenous, i.e. that the noise terms in the vector autoregressive model (2)
are i.i.d. with:

St = St−1A + Zt,

whereZt ∼ N (0, σI) for someσ > 0. In this case, we must have:

Γ = AT ΓA + σI

sinceAT ⊗ A has no unit eigenvalue (by stationarity), this means that:

Γ/σ = (I − AT ⊗ AT )−1
I

whereA ⊗ B is the Kronecker product ofA andB, which implies:

AT A = I − σΓ−1.

We can always chooseσ small enough so thatI−σΓ−1 � 0. This means that we can directly getA
as a matrix square root of(I−σΓ−1). Furthermore, if we pickA to be the Cholesky decomposition
of (I− σΓ−1), and if the graph ofΓ is chordal (i.e. has no cycles of length greater than three) then
there is a permutation of the variablesP such that the Cholesky decomposition ofPΓP T , and the
upper triangle ofPΓP T have the same pattern of zeroes (see Wermuth (1980) for example). In
Figure 4, we plot two dependence networks, one chordal (on the left), one not (on the right). In
this case, the structure (pattern of zeroes) ofA in the VAR model (6) can be directly inferred from
that of the penalized covariance estimate.

Gilbert (1994,§2.4) also shows that ifA satisfiesAT A = I − σΓ−1 then, barring numerical
cancellations inAT A, the graph ofΓ−1 is the intersection graph ofA so:

(Γ−1)ij = 0 =⇒ AkiAkj = 0, for all k = 1, . . . , n.

This means in particular that when the graph ofΓ is disconnected, then the graph ofA must also
be disconnected along the same clusters of variables, i.e.A andΓ have identical block-diagonal
structure. In§4.3, we will use this fact to show that when the graph ofΓ is disconnected, optimally
mean reverting portfolios must be formed exclusively of assets within a single cluster of this graph.

Exogenous dependence models.In the general case where the noise terms are correlated, with
Zt ∼ N (0, Σ) for a certain noise covarianceΣ, and the dependence structure is partly exogenous,
we need to estimate the parameter matrixA directly from the data. In Section 2, we estimated the
matrixA in the vector autoregressive model (2) by regressingSt onSt−1:

Â =
(

ST
t−1St−1

)−1
ST

t−1St.
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Figure 3: Left: a chordal graphical model: no cycles of length greater than three. Right: a non-
chordal graphical model.

Here too, we can modify this estimation procedure in order toget a sparse model matrixA. Our
aim is again to both stabilize the estimation and highlight key dependence relationships between
St andSt−1. We replace the simple least-squares estimate above by a penalized one. We get the
columns ofA by solving:

ai = argmin
x

‖Sit − St−1x‖2 + γ‖x‖1 (15)

in the variablex ∈ Rn, where the parameterλ > 0 controls sparsity. This is known as the LASSO
(see Tibshirani (1996)) and produces sparse least squares estimates.

4.3 Canonical decomposition with penalized estimation

We showed that covariance selection highlights networks ofdependence among assets, and that pe-
nalized regression could be used to estimate sparse model matricesA. We now show under which
conditions these results can be combined to extract information on the support of the canonical
portfolios produced by the decompositions in Section 2 fromthe graph structure of the covariance
matrixΓ and of the model matrixA. Because both covariance selection and the lasso are substan-
tially cheaper numerically than the sparse decomposition techniques in Section 3, our goal here is
to use these penalized estimation techniques as preprocessing tools to narrow down the range of
assets over which we look for mean reversion.

In Section 2, we saw that the Box & Tiao (1977) decomposition for example, could be formed
by solving the following generalized eigenvalue problem:

det(λΓ − AT ΓA) = 0,

12



Figure 4:Left: a connected graphical model.Right: disconnected models.

whereΓ is the covariance matrix of the assetsSt andA is the model matrix in (2). Suppose now
that our penalized estimates of the matricesΓ andAT ΓA have disconnected graphs with identical
clusters, i.e. have the same block diagonal structure, Gilbert (1994, Th. 6.1) shows that the support
of the generalized eigenvectors of the pair{Γ, AT ΓA} must be fully included in one of the clusters
of the graph of the inverse covarianceΓ−1. In other words, if the graph of the penalized estimate of
Γ−1 andA are disconnected along the same clusters, then optimally unpredictable (or predictable)
portfolios must be formed exclusively of assets in a single cluster.

This suggests a simple procedure for finding small mean reverting portfolios in very large
data sets. We first estimate a sparse inverse covariance matrix by solving the covariance selection
problem in (14), settingρ large enough so that the graph ofΓ−1 is split into sufficiently small
clusters. We then check if either the graph is chordal or if penalized estimates ofA share some
clusters with the graph ofΓ−1. After this preprocessing step, we use the algorithms of Section 3
to search these (much smaller) clusters of variables for optimal mean reverting (or momentum)
portfolios.

5 Empirical results

In this section, we first compare the performance of the algorithms described in Section 3. We then
study the mean reversion versus sparsity tradeoff on various financial instruments. Finally, we test
the performance of convergence trading strategies on sparse mean reverting portfolios.
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5.1 Numerical performance

In Figure 1 we plotted the result of the Box-Tiao decomposition on U.S. swap rate data (see details
below). Each portfolio is adense linear combination of swap rates, ranked in decreasing order of
predictability. In Figure 6, we apply the greedy search algorithm detailed in Section 3 to the same
data set and plot thesparse portfolio processes for each target number of assets. Each subplot of
Figure 6 lists the numberk of nonzero coefficients of the corresponding portfolio and its mean
reversion coefficientλ. Figure 5 then compares the performance of the greedy searchalgorithm
versus the semidefinite relaxation derived in Section 3. On the left, for each algorithm, we plot
the mean reversion coefficientλ versus portfolio cardinality (number of nonzero coefficients). We
observe on this example that while the semidefinite relaxation does produce better results in some
instances, the greedy search is more reliable. Of course, both algorithms recover the same solutions
when the target cardinality is set tok = 1 or k = n. On the right, we plot CPU time (in seconds)
as a function of the total number of assets to search. As a quick benchmark, producing 100 sparse
mean reverting portfolios for each target cardinality between 1 and 100 took one minute and forty
seconds.
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Figure 5:Left: Mean reversion coefficientλ versus portfolio cardinality (number of nonzero co-
efficients) using the greedy search (circles, solid line) and the semidefinite relaxation (squares)
algorithms on U.S. swap rate data.Right: CPU time (in seconds) versus total number of assetsn
to compute a full set of sparse portfolios (with cardinalityranging from 1 ton) using the greedy
search algorithm.

5.2 Mean reversion versus sparsity

In this section, we study the mean reversion versus sparsitytradeoff on several data sets. We also
test the persistence of this mean reversion out of sample.
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Figure 6: Sparse canonical decomposition on 100 days of U.S.swap rate data (in percent). The
number of nonzero coefficients in each portfolio vector is listed ask on top of each subplot, while
the mean reversion coefficientλ is listed below each one.
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Swap rates. In Figure 7 we compare in and out of sample estimates of the mean reversion versus
cardinality tradeoff. We study U.S. swap rate data for maturities 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y and
30Y from 1998 until 2005. We first use the greedy algorithm of Section 3 to compute optimally
mean reverting portfolios of increasing cardinality for time windows of 200 days and repeat the
procedure every 50 days. We plot average mean reversion versus cardinality in Figure 7 on the
left. We then repeat the procedure, this time computing the (out of sample) mean reversion in the
200 days time window immediately following our sample and also plot average mean reversion
versus cardinality. In Figure 7 on the right, we plot the out of sample portfolio price range (spread
between min. and max. in basis points) versus cardinality (number of nonzero coefficients) on the
same U.S. swap rate data. Table 2 shows the portfolio composition for each target cardinality.

1 2 3 4 5 6 7 8
1Y 0 0 0 -0.041 -0.037 0.036 -0.013 0.001
2Y 0 0 0 0 0 0 -0.102 0.117
3Y 0 0 -0.288 0.433 0.419 -0.437 0.547 -0.495
4Y 0 -0.714 0.806 -0.803 -0.802 0.809 -0.767 0.702
5Y 1.000 0.700 -0.517 0.408 0.424 -0.389 0.317 -0.427
7Y 0 0 0 0 0 0 0 0.219

10Y 0 0 0 0 0 -0.031 0.025 -0.130
30Y 0 0 0 0 -0.007 0.016 -0.008 0.014

Table 2: Composition of optimal swap portfolios for varioustarget cardinalities.

Foreign exchange rates. We study the following U.S. dollar exchange rates: Argentina, Aus-
tralia, Brazil, Canada, Chile, China, Colombia, Czech Republic, Egypt, Eurozone, Finland, Hong
Kong, Hungary, India, Indonesia, Israel, Japan, Jordan, Kuwait, Latvia, Lithuania, Malaysia, Mex-
ico, Morocco, New Zealand, Norway, Pakistan, Papua NG, Peru, Philippines, Poland, Romania,
Russia, Saudi Arabia, Singapore, South Africa, South Korea, Sri Lanka, Switzerland, Taiwan,
Thailand, Turkey, United Kingdom, Venezuela, from April 2002 until April 2007. Note that ex-
change rates are quoted with four digits of accuracy (pip size), with bid-ask spreads around0.0005
for key rates.

After forming the sample covariance matrixΣ of these rates, we solve the covariance selection
problem in (14). This penalized maximum likelihood estimation problem isolates a cluster of 14
rates and we plot the corresponding graph of conditional covariances in Figure 8. For these 14
rates, we then study the impact of penalized estimation of the matricesΓ andA on out of sample
mean reversion. In Figure 9, we plot out of sample mean reversion coefficientλ versus portfolio
cardinality, on 14 rates selected by covariance selection.The sparse canonical decomposition
was performed on both unpenalized estimates and penalized ones. The covariance matrix was
estimated by solving the covariance selection problem (14)with ρ = 0.01 and the matrixA in (2)
was estimated by solving problem (15) with the penaltyγ set to zero out20% of the regression
coefficients.
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We notice in Figure 9 that penalization has a double impact. First, the fact that sparse portfolios
have a higher out of sample mean reversion than dense ones means that penalizing for sparsity
helps prediction. Second, penalized estimates ofΓ andA also produce higher out of sample mean
reversion than unpenalized ones. In Figure 9 on the right, weplot portfolio price range versus
cardinality and notice that here too sparse portfolios havea significantly broader range of variation
than dense ones.

5.3 Convergence trading

Here, we measure the performance of the convergence tradingstrategies detailed in the appendix.
In Figure 10 we plot average out of sample sharpe ratio versusportfolio cardinality on a 50 days
(out of sample) time window immediately following the 100 days over which we estimate the
process parameters. Somewhat predictably in the very liquid U.S. swap markets, we notice that
while out of sample Sharpe ratios look very promising in frictionless markets, even minuscule
transaction costs (a bid-ask spread of 1bp) are sufficient tocompletely neutralize these market
inefficiencies.

6 Conclusion

We have derived two simple algorithms for extracting sparse(i.e. small) mean reverting portfo-
lios from multivariate time series by solving a penalized version of the canonical decomposition
technique in Box & Tiao (1977). Empirical results suggest that these small portfolios present a
double advantage over their original dense counterparts: sparsity means lower transaction costs
and better interpretability, it also improved out-of-sample predictability in the markets studied in
Section 5. Several important issues remain open at this point. First, it would be important to show
consistency of the variable selection procedure: assumingwe know a priori that only a few vari-
ables have economic significance (i.e. should appear in the optimal portfolio), can we prove that
the sparse canonical decomposition will recover them? Veryrecent consistency results by Amini
& Wainwright (2008) on the sparse principal component analysis relaxation in d’Aspremont et al.
(2007) seem to suggest that this is likely, at least for simple models. Second, while the dual of the
semidefinite relaxation in (11) provides a bound on suboptimality, we currently have no procedure
for deriving simple bounds of this type for the greedy algorithm in Section 3.1.
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Appendix

In the previous sections, we showed how to extract small meanreverting (or momentum) portfolios
from multivariate asset time series. In this section we assume that we have identified such a mean
reverting portfolio and model its dynamics given by:

dPt = λ(P̄ − Pt)dt + σdZt, (16)

In this section, we detail how to optimally trade these portfolios under various assumptions re-
garding market friction and risk-management constraints.We begin by quickly recalling results on
estimating the Ornstein-Uhlenbeck dynamics in (16).

Estimating Ornstein-Uhlenbeck processes

By explicitly integrating the processPt in (16) over a time increment∆t we get:

Pt = P̄ + e−λ∆t(Pt−∆t − P̄ ) + σ

∫ t

t−∆t

eλ(s−t)dZs, (17)

which means that we can estimateλ andσ by simply regressingPt onPt−1 and a constant. With

∫ t

t−∆t

eλ(s−t)dZs ∼
√

1 − e−2λ∆t

2λ
N (0, 1),

we get the following estimators for the parameters ofPt:

µ̂ =
1

N

N
∑

i=0

Pt

λ̂ = − 1

∆t
log

(

∑N
i=1(Pt − µ̂)(Pt−1 − µ̂)
∑N

i=1(Pt − µ̂)(Pt − µ̂)

)

σ̂ =

√

√

√

√

2λ

(1 − e−2λ∆t)(N − 2)

N
∑

i=1

((Pt − µ̂) − e−λ∆t(Pt − µ̂))2

where∆t is the time interval between timest andt − 1. The expression in (17) also allows us to
compute thehalf-life of a market shock onPt as:

τ =
log 2

λ
, (18)

which is a more intuitive measure of the magnitude of the portfolio’s mean reversion.
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Utility maximization in frictionless markets

Suppose now that an agent invests in an assetPt and in a riskless bondBt following:

dBt = rBtdt,

the wealthWt of this agent will follow:

dWt = NtdPt + (Wt − NtPt)rdt.

If Pt follows a mean reverting process given by (16), this is also:

dWt = (r(Wt − NtPt) + λ(P̄ − Pt)Nt)dt + NtσdZt.

If we write the value function:

V (Wt, Pt, t) = max
Nt

Et

[

e−β(T−t)U(Wt)
]

,

the H.J.B. equation for this problem can be written:

βV = max
Nt

∂V

∂P
λ(P̄t − Pt) +

∂V

∂W
(r(Wt − NtPt) + λ(P̄ − Pt)Nt) +

∂V

∂t

+
1

2

∂2V

∂P 2
σ2 +

1

2

∂2V

∂P∂W
Ntσ

2 +
1

2

∂2V

∂W 2
N2

t σ2

Maximizing inNt yields the following expression for the number of shares in the optimal portfolio:

Nt =
∂V /∂W

∂2V /∂W 2σ2
(λ(P̄ − Pt) − rPt) −

∂2V /∂P∂W

∂2V /∂W 2
(19)

Jurek & Yang (2006) solve this equation explicitly forU(x) = log x andU(x) = x1−γ/(1 − γ)
and we recover in particular the classic expression:

Nt =

(

λ(P̄ − Pt) − rPt

σ2

)

Wt,

in the log-utility case.

Leverage constraints

Suppose now that the portfolio is subject to fund withdrawals so that the total wealth evolves
according to:

dW = dΠ + dF

wheredΠ = NtdPt + (Wt − NtPt)rdt anddF represents fund flows, with:

dF = fdΠ + σfdZ
(2)
t
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whereZ
(2)
t is a Brownian motion (independent ofZt). Jurek & Yang (2006) show that the optimal

portfolio allocation can also be computed explicitly in thepresence of fund flows, with:

Nt =

(

λ(P̄ − Pt) − rPt

σ2

)

1

(1 + f)
Wt = LtWt,

in the log-utility case. Note that the constantf can also be interpreted in terms of leverage limits.
In steady state, we have:

Pt ∼ N
(

P̄ ,
σ2

2λ

)

which means that the leverageLt itself is normally distributed. If we assume for simplicitythat
P̄ = 0, given the fund flow parameterf , the leverage will remain below the levelM given by:

M =
α(λ + r)

(1 + f)σ
√

2λ
(20)

with confidence levelN(α), whereN(x) is the Gaussian CDF. The bound on leverageM can thus
be seen as an alternate way of identifying or specifying the fund flow constantf in order to manage
capital outflow risks.
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Figure 7:Left: mean reversion coefficientλ versus portfolio cardinality (number of nonzero coef-
ficients), in sample (blue circles) and out of sample (black squares) on U.S. swaps.Right: out of
sample portfolio price range (in basis points) versus cardinality (number of nonzero coefficients)
on U.S. swap rate data. The dashed lines are at plus and minus one standard deviation.

Figure 8: Graph of conditional covariance among a cluster ofU.S. dollar exchange rates. Posi-
tive dependencies are plotted as green links, negative onesin red, while the thickness reflects the
magnitude of the covariance.

23



0 2 4 6 8 10 12 14
−20

0

20

40

60

80

100

120

140

Cardinality

M
ea

n
R

ev
er

si
o

n

0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Cardinality

R
an

g
e

Figure 9: Left: out of sample mean reversion coefficient versus portfolio cardinality (number of
nonzero coefficients), on 14 U.S. dollar exchange rates clustered by covariance selection. The
sparse canonical decomposition was performed on both unpenalized estimates (black squares) and
penalized ones (blue circles).Right: out of sample portfolio price range (in percent) versus cardi-
nality. The dashed lines are at plus and minus one standard deviation.
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Figure 10: Left: average out of sample sharpe ratio versus portfolio cardinality on U.S. swaps.
Right: idem, with a bid-ask spread of 1bp. The dashed lines are at plus and minus one standard
deviation.
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