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ABSTRACT

Prior studies find that a strategy that buys high-beta stocks and sells low-beta stocks
has a significantly negative unconditional capital asset pricing model (CAPM) alpha,
such that it appears to pay to “bet against beta.” We show, however, that the condi-
tional beta for the high-minus-low beta portfolio covaries negatively with the equity
premium and positively with market volatility. As a result, the unconditional alpha
is a downward-biased estimate of the true alpha. We model the conditional market
risk for beta-sorted portfolios using instrumental variables methods and find that the
conditional CAPM resolves the beta anomaly.

THE SHARPE-LINTNER CAPITAL asset pricing model (CAPM) implies that expo-
sure to market risk, as measured by beta, should be compensated by the mar-
ket risk premium. Based on the performance of portfolios formed on lagged
firm-level beta, however, a number of empirical studies find that the risk-
reward relation is too flat. For example, Friend and Blume (1970) and Black,
Jensen, and Scholes (1972) demonstrate that portfolios of high-beta stocks earn
lower returns than implied by the CAPM and therefore have negative alphas,
whereas portfolios of low-beta stocks earn positive alphas. Fama and French
(1992, 2006) extend these results by showing that the beta-return relation be-
comes even flatter after controlling for size and book-to-market characteristics.
Finally, Frazzini and Pedersen (2014) confirm the underperformance of high-
beta stocks over a long sample period extending from 1926 to 2012 and develop
a “betting-against-beta” strategy, which has drawn substantial interest from
academics and practitioners alike.!

*Scott Cederburg is with the Eller College of Management, University of Arizona. Michael
O’Doherty is with the Trulaske College of Business, University of Missouri. We are grateful to Phil
Davies and Rick Sias for their detailed suggestions on the paper. We also thank Oliver Boguth,
Wayne Ferson, Iva Kalcheva, Eric Kelley, Kenneth Singleton (the Editor), an Associate Editor,
two anonymous referees, and seminar participants at Arizona State University, the University of
Arizona, the University of Kansas, the University of Missouri, and the 2013 Northern Finance
Association for helpful comments. We have read the Journal of Finance’s disclosure policy and
have no conflicts of interest to disclose.

1 For example, Asness, Frazzini, and Pedersen (2014), Bali et al. (2014), Huang, Lou, and Polk
(2014), Novy-Marx (2014), Boguth and Simutin (2015), and Malkhozov et al. (2015) examine aspects
of the betting-against-beta strategy. Dozens of funds have also been set up to take advantage of the
low-beta and closely related low-volatility anomalies (see, for example, “Beat the Market—With
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Figure 1. Cross-sectional distribution of firm betas, July 1927 to December 2012. The
figure displays statistics for the cross-sectional distribution of firm betas. The dashed line is the
median and the solid lines show the 5™ and 95t percentiles of firm betas. Firm betas are estimated
at the beginning of each month using daily returns over the previous 12 months.

In this paper, we reconsider the evidence on the abnormal performance of
beta-sorted portfolios. Prior work focuses on the unconditional CAPM alphas of
these strategies and finds a significantly negative alpha on a high-minus-low
beta-spread portfolio. It is well known, however, that unconditional alphas are
biased estimates of the true portfolio alphas if portfolio betas vary systemat-
ically with the market risk premium or market volatility (see Grant (1977),
Jagannathan and Wang (1996), Lewellen and Nagel (2006), and Boguth et al.
(2011)).2 For the beta anomaly to be explained by a bias in unconditional alpha,
the conditional beta for the high-minus-low strategy must display meaningful
time-series variation. Consistent with this argument, we find that the betas
of portfolios sorted on past firm beta vary substantially over time, largely as
a result of the shifting cross-sectional variation in firm betas. For instance,
Figure 1 reveals that the 90% interval of the cross section of firm betas exhibits
pronounced changes over the sample period. We observe a relatively tight dis-
tribution of betas early in the postwar period, with a beta difference between
the 95 and 5" percentiles of about 1.5, whereas this difference approximately
doubles to a beta spread of around 3.0 in the 1990s and early 2000s. The be-
tas of portfolios sorted on past firm beta inherit these time-series patterns,
displaying large swings over the sample period.

Less Risk,” The Wall Street Journal, October 1, 2011, and “High Hopes for ‘Low Volatility’ Funds,”
The Wall Street Journal, April 6, 2014).

2 Given that unconditional and conditional CAPM inferences may differ, a recent literature
reevaluates several other cross-sectional anomalies while allowing for time variation in betas. See,
for example, Lettau and Ludvigson (2001), Avramov and Chordia (2006), Fama and French (2006),
Lewellen and Nagel (2006), Ang and Chen (2007), Boguth et al. (2011), and O’Doherty (2012).
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Figure 2. Systematic trends in portfolio betas, July 1930 to December 2012. Panel A
(Panel B) shows the instrumental variables (IV) beta for the high-minus-low beta portfolio and
the aggregate log dividend yield (volatility of the CRSP value-weighted portfolio). The conditional
beta estimate corresponds to case 7 in Table 2, and the IV approach is outlined in Section I.A. The
log dividend yield is the log of the sum of dividends accruing to the CRSP value-weighted portfolio
over the previous 12 months scaled by the lagged level of this portfolio. Market volatility is the
realized volatility using daily excess market returns over the previous 12 months.

As noted above, previous work establishes a formal link between time vari-
ation in market exposure for a given strategy and the bias in its unconditional
CAPM alpha. Specifically, Lewellen and Nagel (2006), Boguth et al. (2011), and
others show that, if the conditional CAPM holds, the unconditional alpha for a
particular asset can be approximated by

aV ~ Cov(B; s, B 1(Rpy)) — @COV (Bits o,it) , @8]

m

where B; ; is the asset’s conditional beta, E(R,,;) and E;_1(R,,;) are the uncondi-
tional and conditional market expected excess returns, and o2 and 0?2, are the
unconditional and conditional market volatilities. A negative bias in uncondi-
tional alpha arises when beta is negatively related to the expected excess return
on the market (“market timing”) and/or positively related to market volatility
(“volatility timing”). In empirical applications, biases in unconditional alphas
can be substantial, with the volatility timing channel having a particularly
large potential effect (Boguth et al. (2011)).

Our tests focus on contrasting the unconditional and conditional performance
of decile portfolios sorted on prior market beta. Figure 2 provides a preliminary
indication that a negative unconditional CAPM alpha for a high-minus-low beta
portfolio is plausibly attributable to market timing and volatility timing effects
in the data.? Panel A shows that this strategy’s beta is inversely related to
the log dividend yield for the market portfolio, which is a positive predictor
of the equity premium (e.g., Fama and French (1988) and Cochrane (2008)).

3 We introduce our method for estimating conditional portfolio betas in Section I.A and detail
the construction of the beta-sorted test assets in Section I.B.
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This systematic relation tends to bias the unconditional alpha downward in
equation (1) because of a market timing bias. In Panel B, the conditional beta
is positively related to market volatility, which further contributes to a negative
bias in the unconditional alpha from volatility timing.

Building on this initial evidence, we directly examine the performance of the
beta-sorted trading strategies. Consistent with previous work, we find that the
difference in unconditional alphas for high- and low-beta stocks is large in eco-
nomic magnitude. The high-beta decile portfolio earns an unconditional alpha
of —0.50% per month (¢-statistic of —2.7), whereas the low-beta decile portfo-
lio earns an alpha of 0.09% (¢-statistic of 0.8) over the 1930 to 2012 sample
period. The associated high-minus-low hedge portfolio thus has a monthly al-
pha of —0.59% (¢-statistic of —2.3), indicating that high-beta firms significantly
underperform their low-beta counterparts.

In contrast, conditional alphas for the high-minus-low strategy are statisti-
cally insignificant and substantially smaller in magnitude in comparison to the
unconditional case. Our empirical approach is based on standard instrumen-
tal variables (IV) methods (e.g., Shanken (1990), Ferson and Schadt (1996),
and Boguth et al. (2011)) in which portfolio betas are modeled as a function of
lagged state variables. We specifically consider conditioning variables from the
prior literature including lagged betas for each portfolio and macroeconomic
variables. In our most comprehensive conditional model, the long-short beta
portfolio earns a conditional alpha of —0.18% per month (¢-statistic of —0.7),
which represents a nearly 70% reduction in magnitude relative to the uncon-
ditional performance estimate of —0.59%. Our analysis suggests that the per-
ceived abnormal performance from betting against beta is largely erased after
properly incorporating conditioning information into the benchmark model.

We also demonstrate that conditioning remains critically important in evalu-
ating the performance of beta-sorted portfolios relative to a multifactor bench-
mark. This analysis is motivated by Fama and French’s (1992, 2006) evidence
that the beta anomaly becomes stronger after controlling for firm size and
book-to-market in portfolio sorts. Based on these results, a reasonable prior is
that the poor performance for high-beta firms relative to the unconditional
CAPM should become even more pronounced relative to the Fama-French
(1993) three-factor model, which controls for exposure to the size and value
effects in benchmarking performance. To further explore this issue, we analyze
the performance of unconditional and conditional versions of the three-factor
model in explaining the average returns for our beta-sorted portfolios. The re-
sults allow us to directly distinguish between the effects from conditioning and
those from incorporating additional risk factors. As anticipated, the uncondi-
tional three-factor model displays poor performance in pricing the beta-spread
portfolio, producing an alpha estimate of —0.75% per month (¢-statistic of —3.0).
This estimate is also significantly lower than the corresponding unconditional
CAPM alpha for this strategy. The conditional version of the three-factor model
performs reasonably well, however, with a conditional alpha of —0.26% (¢-
statistic of —1.7). Moreover, we find that over 80% of this improvement is
attributable to systematic variation in betas on the market factor. In short, the
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multifactor results reinforce the importance of accounting for changes in condi-
tional exposures to market risk in evaluating betting-against-beta strategies.

Our final objective is to characterize the economic mechanisms underly-
ing our results. We are particularly interested in identifying state variables
with predictive content for the observed dispersion in firm-level betas shown
in Figure 1, as these variables should also be helpful in characterizing the
market exposures for the high- and low-beta strategies. Based on the exten-
sive literature on the determinants of individual firm betas, we propose that
times of increased heterogeneity in firm-level investment opportunities, in-
creased heterogeneity in firm leverage, and heightened average idiosyncratic
risk across firms are likely to be associated with greater dispersion in be-
tas, all else equal. Consistent with these predictions and the theoretical lit-
erature, state variables motivated by these explanations are robust predic-
tors of betas for the strategies of interest and are valuable in accounting
for the differences in unconditional and conditional performance for the beta
portfolios.

Our paper contributes to the asset pricing literature by reevaluating the
performance of beta-sorted portfolios while properly accounting for predictable
time-series variation in portfolio betas. The CAPM’s failure to explain the av-
erage returns of these strategies is widely viewed as one of the most damaging
pieces of evidence against the model. In particular, the beta anomaly seems
to provide direct and straightforward evidence against the primary prediction
of the CAPM—that exposure to market risk is sufficiently rewarded—which
suggests a broad rejection of the model on statistical and economic grounds.
Our study provides an explanation for these results and shows that the mar-
ket risk of beta-sorted portfolios is rewarded in a manner that is consistent
with the conditional CAPM. To be clear, however, we focus exclusively on the
performance of beta-sorted portfolios and do not consider whether beta is sig-
nificantly rewarded among other sets of test assets. An alternative approach
based on standard cross-sectional regressions (e.g., Fama and MacBeth (1973))
could be used to test whether beta is positively rewarded in a given cross sec-
tion of assets. This framework can yield a broader assessment of the empirical
success of the CAPM in pricing diverse sets of test assets and can be applied to
test whether market risk is priced after controlling for firm characteristics or
exposures to additional risk factors. Our focus on beta-sorted portfolios is nar-
rower in scope, but our results on the beta anomaly are important as evidenced
by the broad interest in this strategy.*

4 An alternative approach to testing the CAPM focuses on whether the average return for
the high-minus-low beta portfolio is significantly positive (e.g., Reinganum (1981) and Fama and
French (1992)). We find that this strategy earns an average return of 0.44% per month with
an associated ¢-statistic of 1.09. Thus, consistent with prior findings, we cannot reject the null
hypothesis of a flat beta-return relation based on the average return of this hedge portfolio. As
noted by Kothari, Shanken, and Sloan (1995), however, such a test suffers from low power given
the high level of volatility of the long-short trading strategy (12.68% per month in our data). In
fact, had the high-low beta portfolio earned an average return of 0.62% per month over 1930 to
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We further add to the literature by documenting and investigating interest-
ing trends in the cross-sectional dispersion of firm-level beta estimates. We
propose several theoretical explanations underlying these changes and the
associated systematic trends in market risk for beta-sorted portfolios. These
results build on those of Chan and Chen (1988), who show how changes in
the cross spectrum of conditional betas can impact tests of the unconditional
CAPM. Finally, we contribute to the literature on the relative performance of
factor models in explaining patterns in average returns.

The remainder of the paper is organized as follows. Section I introduces
empirical methods for testing the conditional CAPM and discusses the data.
Section II contains our main empirical results on the unconditional and condi-
tional performance of portfolios sorted on past firm beta. Section III considers
potential explanations for the systematic variation in portfolio betas that drives
our results. Section IV concludes.

I. Empirical Methods and Data Description

The objective of the paper is to contrast the unconditional and conditional
performance of portfolios formed on past values of equity beta. Section I.A
introduces our IV approach for evaluating conditional portfolio performance,
and Section I.B provides details on constructing the beta-sorted test assets.

A. Conditional Performance Evaluation

Our primary tests focus on the conditional performance of beta-sorted port-
folios. The conditional CAPM implies that

o = E(Ri,tllt_ﬂ - ,Bi,tE(Rm.tut—l) =0, (2

where R; ; is portfolio i’s excess return during period ¢, R, ; is the excess market
return, I;_; is the investor information set at the end of period ¢ — 1, and 8;; =
Cov(R; ¢, Ry ¢|L;—1)/Var(R,,;|I;_1) is the conditional beta of portfolio i. Several
methods for estimating conditional portfolio risk have been proposed in the
finance literature. The traditional implementation of the conditional CAPM
follows Shanken (1990), Ferson and Schadt (1996), and Ferson and Harvey
(1999) by modeling the portfolio beta as a linear function of instruments such
as the aggregate dividend yield and default spread.

Boguth et al. (2011) build upon this literature and demonstrate improve-
ments from incorporating lags of realized portfolio betas as additional state
variables in the classical IV approach. Lewellen and Nagel (2006) and others
directly characterize conditional portfolio risk using realized betas from short-
window CAPM regressions, recognizing that the IV approach conditions on a
subset of the investor information set (e.g., Cochrane (2005)). Realized beta es-
timates may capture variation in portfolio betas that is otherwise unmodeled

2012 such that its conditional CAPM alpha was zero in our most comprehensive IV model, this
test would be unable to statistically reject a flat relation between beta and return.
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by the econometrician, so including these variables can improve the perfor-
mance of the IV approach. Boguth et al. (2011) further emphasize that lagging
the realized beta estimates is essential in tests of the conditional CAPM. In-
cluding contemporaneously estimated betas may lead to an “overconditioning”
bias in estimated alphas because these beta estimates are not in the investor
information set at the beginning of the period. This bias can be severe when
the returns for a particular strategy are nonlinear in market returns. Incor-
porating lagged realized betas as instruments in the IV implementation of the
conditional CAPM avoids this overconditioning problem as these variables are
known to investors ex ante.

We follow this approach and use both the one-step and two-step IV models
outlined below to assess the performance of our beta-sorted test portfolios. As
discussed in Section I.B.2, our primary analysis uses a time series of quarterly
portfolio returns. The one-step IV (IV1) method is based on the conditional
return regression

Ri,r = O[iIVI + (Vi,O + yitlzi,r—l)Rm,r + U ., 3)

where 7 indexes quarters, R; ; is the quarterly buy-and-hold excess return for
portfolio i over quarter t, R, . is the quarterly buy-and-hold excess return for
the market portfolio, and Z; ;1 C I,_; is a k£ x 1 vector of instruments. We thus
assume that the conditional portfolio beta is a linear function of a portfolio-
specific state variable vector, ﬁi{yl =v0+ yif 1Z; -1, and the conditional port-
folio alpha is constant.® Given that Z; ,_; is in the investor information set at
the start of period , this method eliminates overconditioning bias in estimated
alphas. Additionally, the unconditional CAPM is a special case of equation (3) in
which Z; ;_; is the null information set, such that the portfolio beta is restricted
to be constant. We denote the portfolio alpha in this case as o:iU .

We estimate equation (3) using the generalized method of moments (GMM).
Following Boguth et al. (2011), we use the moment conditions

E [(Ri,r — oVt — (o + v/ 1Zic1) Rm,r) Xi,z] =0, (4)

where X; . =[1 R,. Z . R,.]'. The model is thus exactly identified and
the GMM parameter estimates correspond to ordinary least squares estimates.
For many of our empirical applications, we are interested in comparing esti-
mates of «!V! across portfolios or for a single portfolio under alternative infor-
mation sets. In these cases, it is straightforward to combine multiple sets of
moment conditions in the form of equation (4) into a single GMM estimation
procedure.® Finally, we use Newey-West (1987) standard errors to statistically

assess portfolio performance.

5 This implementation of the conditional CAPM follows Ferson and Schadt (1996) and Boguth
et al. (2011). Shanken (1990) and Ferson and Harvey (1999) also model conditional alpha as a
linear function of state variables.

6 See Appendix A.5 in Boguth et al. (2011) for estimation details.
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Much of the empirical work that follows focuses on the difference in the
performance between portfolios of high-beta firms and low-beta firms under
alternative information sets. We specifically test whether the difference in
conditional portfolio alphas, e/ = /1 — @IVl is equal to zero as implied by
the conditional CAPM @i.e., equation (2)). We also assess whether this difference
in conditional alphas for a given set of instruments is significantly larger than
the corresponding difference in unconditional alphas. That is, we test the null
hypothesis that o};' <a¥,.

Our initial tests presented in Section II are largely atheoretical in the choice
of instruments, Z; ,_1, for each portfolio. As a starting point, Boguth et al.
(2011) show that lagged betas from prior estimation windows are typically
good predictors of beta, so we incorporate lagged short-term and long-term
betas in the set of conditioning information. We also follow prior literature
on the conditional CAPM and include common macroeconomic state variables
in the IV specification. The estimates of y;; from the one-step IV model in
equation (3) can then be used to assess the predictive content of various state
variables for portfolio risk loadings.

Boguth et al. (2011) also introduce a two-step IV method that can be used to
generate more direct evidence on the relation between the conditioning vari-
ables and portfolio betas. To implement this approach, we begin by estimating
a separate CAPM regression for each quarter t using daily portfolio return
data to obtain a time series of nonoverlapping conditional CAPM regression
parameters that spans the entire sample period. The regression model is

Tmj—2+Tmj-3+Tmj-a

3

rij =0 + Biolmj + Birmj-1+ Bi2 [ ] +¢e;, (5)
where r; ; is the excess return for a given portfolio and r,, ; is the excess market
return on day j of quarter z. The portfolio beta estimate for quarter 7 is

Bic=Bio+Bi1+PBiso. (6)

The regressions include lags of the excess market return to alleviate the im-
pact of asynchronous trading, and the slopes on lags two through four are
constrained to be equal following Lewellen and Nagel (2006).

In the first stage of the two-stage IV (IV2) approach, the estimated quarterly
portfolio betas are regressed on a set of lagged instruments,

Bic=8i0+ 8i1Zi1+eix. (7

The fitted betas from this regression, B; ., are then used in a second-stage
return regression that is given by

R, =a!"2+(¢io+¢i1hi)Rur +vis. (8

The two-stage method is thus a restricted version of the IV approach in which
the IV beta, /Y2 = ¢; o + ¢ .1Bi ., is constrained to be linear in the fitted first-

\T
stage beta. The first-stage parameter estimates and R? from the regression
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model in equation (7) directly reflect the ability of a given set of instruments
to describe beta dynamics. Additionally, regressing portfolio beta estimates on
Z; -1 in the first stage of the IV2 approach tends to produce more precise esti-
mates of the conditional beta coefficients (i.e., §; 1) compared to the correspond-
ing IV1 coefficients from the return-based regression in equation (3), so the IV2
approach may be a more powerful test for evaluating potential determinants
of portfolio betas. These features of the IV2 approach are particularly valuable
for our analysis in Section III, which focuses on theoretical explanations for
the observed time-series trends in systematic risk for the beta portfolios.

B. Data

Section 1.B.1 provides details on the sample and portfolio construction, and
Section I.B.2 reports summary statistics for the beta-sorted portfolios.

B.1. Sample Construction

The sample includes all NYSE, Amex, and NASDAQ ordinary common stocks
with return data available on the CRSP daily and monthly stock files and suf-
ficient historical return data to compute beta estimates to be used in form-
ing the beta-based trading strategies. The empirical tests use daily, monthly,
and quarterly returns on beta-sorted portfolios. Our test assets are based on
formation-period betas estimated from the prior 12 months of daily return data
following equations (5) and (6). A firm must have 150 valid return observations
over the prior 12 months to be included in this trading strategy.

Each year at the beginning of July, we sort firms into 10 groups based on
past beta using all listed firms for the break points. The portfolios are value
weighted and held for 12 months before rebalancing. We use the CRSP daily
file to construct a series of daily returns and the CRSP monthly file to con-
struct monthly and quarterly return series for each portfolio. For each series,
we follow the approach in Liu and Strong (2008) to ensure that the returns
correspond to those actually realized by a buy-and-hold investor.

When a firm is delisted from an exchange during a given month, we replace
any missing returns with the delisting returns provided by CRSP.” We convert
all portfolio returns to excess returns by subtracting the corresponding risk-
free rate. Data on the daily and monthly market return (i.e., the CRSP value-
weighted index) and the risk-free rate are from Kenneth French’s website.®
We construct the quarterly buy-and-hold excess return series by compounding
monthly returns for a given portfolio and the risk-free asset separately and then
computing the difference. Our tests use return data from July 1926 to December
2012. Given that some of the empirical approaches rely on lagged estimates of

7See Shumway (1997) for a discussion of delisting bias.
8 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. We thank Kenneth French for
making these data available.
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conditional betas, the first portfolio formation date is July 1930, and the tables
report portfolio performance over the period July 1930 to December 2012.

B.2. Portfolio Summary Statistics

Table I reports summary statistics for the value-weighted portfolios sorted
on firm beta. Panels A and B present means and standard deviations of excess
returns for the daily, monthly, and quarterly series. For purposes of compari-
son, the average returns and standard deviations are reported in percentage
per month. That is, the daily average excess returns (standard deviations) are
multiplied by 22 (+/22), where 22 is the average number of trading days per
month for the full sample period. Similarly, the average quarterly excess re-
turns (standard deviations) are multiplied by 1/3 (\/1/73). In each case, the
long-short decile portfolio yields only modestly positive returns. A zero-cost
portfolio that takes a long position in the high-beta decile and a short position
in the low-beta decile earns an average excess return of 0.15%, 0.23%, or 0.44%
per month using daily, monthly, or quarterly data, respectively.’ These results
are consistent with the findings of Fama and French (1992) and Frazzini and
Pedersen (2014), who document a relatively flat relation between equity beta
and realized return.

The observed differences in average excess returns for the daily, monthly,
and quarterly series warrant additional analysis. Boguth et al. (2015) demon-
strate that delayed incorporation of information into stock prices leads to a
downward bias in short-horizon average portfolio returns. The bias produced
by slow information diffusion is amplified for buy-and-hold strategies when
stocks react to new information with differential delays. This bias tends to be
particularly large for value-weighted portfolios and strategies concentrated in
small and volatile stocks, so horizon effects in measured portfolio performance
may impact our beta-based trading strategies (see, for example, Panel C of
Table I).

Boguth et al. (2015) further emphasize the importance of selecting an appro-
priate return interval to mitigate any bias in measured average returns and
alphas related to these effects. We adopt their proposed diagnostic tool and
find that a quarterly return measurement interval is appropriate for our sub-
sequent analysis. Specifically, for the low- and high-beta portfolios, we compute
average n-day buy-and-hold returns scaled to a monthly equivalent for values
of n ranging from one to 264 (i.e., up to one year). The results are shown in
Figure 3.1° Consistent with the results in Panel A of Table I, the high-beta port-
folio exhibits pronounced horizon effects in average returns. The upward slope

9 Blume and Stambaugh (1983) and Roll (1983) examine microstructure effects in average re-
turns and demonstrate that bid-ask bounce can cause upward biases in average returns that
are amplified when taking averages of short-horizon returns. Asparouhova, Bessembinder, and
Kalcheva (2013) show that value weighting returns helps minimize this upward bias.

10 The plots are constructed using the daily time series of portfolio returns. We refer the reader to
Boguth et al. (2015) for computation details. We also note that, similar to our results, Boguth et al.
(2015) find large biases in daily and monthly average returns for several U.S. = style portfolios.
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Table I
Summary Statistics, July 1930 to December 2012

The table reports summary statistics for value-weighted decile portfolios sorted on past market
beta. “H” refers to the high-beta portfolio, “L” refers to the low-beta portfolio, and “HL” refers
to their difference. The formation-period betas are estimated using 12 months of daily data as
described in Section I.B.1, and the portfolios are rebalanced at the beginning of each July using all
listed firms for the break points. Panel A presents average excess returns for the daily, monthly,
and quarterly return series. Average excess returns are reported in percentage per month (i.e.,
the daily average excess returns are multiplied by 22 and the quarterly average excess returns
are multiplied by 1/3). Quarterly statistics are calculated by constructing a series of quarterly
excess returns for each portfolio by compounding monthly returns. Panel B presents the standard
deviation of excess returns for each portfolio in percentage per month (i.e., the daily standard
deviations are multiplied by +/22 and the quarterly standard deviations are multiplied by \/W).
Panel C reports the time-series average of the fraction of total market capitalization for each
portfolio as of the portfolio formation date. Panel D presents time-series properties of the value-
weighted, formation-period portfolio betas. Panel E presents unconditional CAPM beta estimates
based on daily, monthly, and quarterly regressions for each portfolio. Panel F reports averages of
conditional CAPM betas estimated from nonoverlapping windows based on daily data (three-month
intervals), monthly data (12-month intervals), and quarterly data (30-month intervals). The daily
betas are computed as the sum of slope coefficients from regressions of portfolio excess returns on
the market excess return, its lag, and the average of lags two through four.

Portfolio

L 2 3 4 5 6 7 8 9 H HL

Panel A: Mean Excess Returns

Daily 0.35 0.55 0.54 0.68 0.77 0.74 068 0.71 063 050 0.15
Monthly 0.38 0.57 056 069 0.77 0.76 070 0.76 0.66 0.61 0.23
Quarterly 0.40 0.61 0.60 0.73 0.82 0.83 0.77 086 078 084 044

Panel B: Standard Deviations

Daily 3.46 356 430 484 537 6.00 649 729 8.05 955 843
Monthly 3.96 411 460 518 550 642 693 8.09 860 10.88 9.42
Quarterly 449 491 532 586 6.40 7.77 834 10.12 10.65 14.33 12.68

Panel C: Proportion of Total Market Capitalization

Mean 0.07 0.10 0.12 0.12 0.13 0.12 0.12 0.10 0.08 0.05

Panel D: Properties of Formation-Period Betas

Mean 0.11 0.42 061 078 093 1.09 127 148 1.75 228
Standard deviation  0.31  0.23 0.22 0.21 0.21 020 021 023 0.27 043
Minimum -091 -0.09 0.14 0.34 050 067 0.86 1.02 1.18 146
Maximum 0.53 0.81 098 115 131 156 176 2.09 241 3.68

Panel E: Unconditional CAPM Betas

Daily 0.51 0.65 0.78 090 0.98 1.12 121 138 149 1.77 1.26
Monthly 049 066 0.78 090 097 1.13 123 142 150 183 134
Quarterly 047 0.67 075 085 094 115 124 149 156 202 155

(Continued)



748 The Journal of Finance®

Table I—Continued

Portfolio

L 2 3 4 5 6 7 8 9 H HL

Panel F: Average Conditional CAPM Betas

Daily 054 064 076 087 097 108 117 132 145 166 1.12
Monthly 059 065 075 087 097 107 118 133 146 172 1.13
Quarterly 063 069 078 085 096 103 115 132 153 182 1.18

in the plot for low n suggests that the bias related to partial price adjustment
would not be alleviated even in monthly returns. In contrast, the downward
bias is largely absent in quarterly returns for the beta-sorted portfolios, and
we base our analysis primarily on this return interval throughout the paper.!!

Panel D of Table I reports the time-series properties of the value-weighted
formation-period betas including the mean, standard deviation, minimum, and
maximum beta for each portfolio as of the portfolio formation date in July of
each year. The average formation-period betas show considerable time-series
variation, which is likely to be reflected in the conditional market exposures
for each portfolio.

Finally, Panels E and F of Table I show beta estimates from unconditional and
conditional CAPM regressions based on daily, monthly, and quarterly excess
portfolio returns. The conditional beta estimates in Panel F are time-series
averages of beta estimates from nonoverlapping windows based on daily data
(three-month intervals), monthly data (12-month intervals), and quarterly data
(830-month intervals). The monotonically increasing patterns in portfolio betas
suggest that the ranking betas are a good proxy for relative future exposure to
market risk. The portfolio beta estimates also provide some indication that the
average formation-period betas in Panel C overstate the true cross-sectional
dispersion in betas. For example, the average formation-period betas estimated
from daily data are 0.11 for the low-beta decile and 2.28 for the high-beta decile,
whereas the daily holding-period conditional betas range from 0.54 to 1.66. This
result is unsurprising as we expect a positive cross-sectional relation between
measurement error in individual firm formation-period betas and portfolio rank
(e.g., Black, Jensen, and Scholes (1972)).

Two additional aspects of these betas are worth noting. First, portfolio beta
estimates exhibit some evidence of horizon effects, particularly among high-
beta stocks. Boguth et al. (2015) show that the same slow information dif-
fusion mechanism that produces the previously discussed horizon effects in
average returns can also affect portfolio beta estimates. Specifically, daily sum
betas with a small number of lags are likely to be biased. We are cognizant of
these issues in developing our empirical design. The IV1 and IV2 estimation

11 We note that, for average holding period returns in Figure 3 between two and six months, the
largest absolute difference between the three-month return and any other holding period return is
1.2 basis points per month for the low-beta portfolio and 3.2 basis points for the high-beta portfolio.
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Figure 3. Mean buy-and-hold returns for beta portfolios scaled to a monthly holding
period, July 1930 to December 2012. The figure plots average n-day buy-and-hold returns
scaled to a monthly equivalent, [E(r;_,;1 . ..7)]??/® — 1, for the high- and low-beta decile portfolios.
The plots show mean monthly portfolio returns based on holding periods ranging from 1 to 264
days. The horizontal axis is scaled to months (i.e., the n-day holding periods are divided by 22).

approaches implicitly account for horizon effects in betas, as daily portfolio be-
tas are used only as instruments for the IV betas, which are estimated directly
from quarterly returns (see Boguth et al. (2011) for additional discussion on
this topic). Second, the unconditional beta of the high-minus-low beta portfolio
is 1.55 compared to an average conditional beta of 1.18 using quarterly data.
This difference in unconditional and conditional betas provides direct evidence
that volatility timing effects are likely to play a key role in our analysis of
portfolio performance. That is, the volatility timing channel works primarily
through a bias in unconditional beta, as the unconditional beta estimate tends
to overstate the average risk of a strategy when the conditional beta is pos-
itively related to market volatility. This bias in unconditional beta, in turn,
leads to a bias in unconditional alpha as seen in equation (1).

I1. Portfolio Performance

Section II.A contains our main findings on the performance of the beta-sorted
portfolios relative to the CAPM using the IV estimation approach. Section
I1.B extends this analysis to a multifactor setting by examining the pricing
performance of unconditional and conditional versions of the Fama-French
(1993) three-factor model.

A. CAPM Alphas

As a starting point, we investigate the impact of conditioning information
on the performance of our beta strategies using a standard set of instruments
introduced in prior literature. Boguth et al. (2011) show that short-term and
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long-term lagged beta estimates for a given portfolio are valuable instruments
for predicting conditional portfolio risk exposure. We therefore consider lagged
three-month and 36-month beta measures as instruments. We estimate the
lagged-component (LC) betas for a given portfolio at the end of quarter r — 1 as
the portfolio-weighted averages of lagged beta estimates for constituent firms
to be included in the portfolio in period t. As such, these betas account for
changes in portfolio weights and portfolio turnover.!? We also use two lagged
macroeconomic state variables that are common in the literature: the dividend
yield (DY) and the default spread (DS).!3

An additional issue specific to our empirical application arises when measur-
ing the LC betas of beta-sorted portfolios for use as instruments. Measurement
error in formation-period beta and portfolio rank tend to be positively associ-
ated as discussed in Section I.B.2. In constructing the LC betas, we are thus
careful to avoid using any firm return data that overlap with the data used to
estimate the formation-period betas, as systematic measurement error in the
lagged beta estimates would likely diminish their value as instruments. The
short-term beta instruments, fZC%, are based on firm betas estimated using
daily return data within a lagged three-month period following equations (5)
and (6). For the first, second, and fourth quarters of each year, 3 is calcu-
lated using firm betas from the most recent quarter. During the third quarter
(i.e., July to September), the immediately preceding quarter falls within the
period used to estimate the formation-period betas. We thus use firm betas
from the second quarter in the prior year, which is the most recent quarter
that falls outside the formation beta measurement period, to calculate -€3
for the third quarter of each year. A natural concern with this empirical de-
sign is that the predictive content of 87C3 for realized portfolio beta may be
diminished during the third quarter. As such, we include specifications with a
third-quarter indicator (g3)) and interaction term (g3 x °®) to allow for a
differential impact on the portfolio beta during this quarter. Finally, the long-
term LC betas, ¢3¢, are estimated from firm betas measured using daily data
over the 36-month period immediately preceding the formation-beta estimation
window.!4

12'We also investigated three-month and 36-month lagged-portfolio betas measured using past
portfolio returns rather than constituent firm returns. The resulting inferences on portfolio alphas
are similar to those obtained using the LC betas as instruments. We provide a discussion of these
results in the Internet Appendix. The Internet Appendix is available in the online version of this
article on the Journal of Finance website.

13The dividend yield is the difference between the log of the sum of dividends accruing to
the CRSP value-weighted market portfolio over the prior 12 months and the log of the lagged
index level. The default premium is the yield spread between Moody’s Baa- and Aaa-rated
bonds. The bond yields are obtained from the Federal Reserve Bank of St. Louis website. See
http://research.stlouisfed.org/fred2/. We examined specifications that also included the term pre-
mium and the yield on a short-term Treasury bill, but these variables did not have a material
impact on model fit or affect inferences. We omit these variables for parsimony but the results are
available in the Internet Appendix.

14 We require 36 (450) valid return observations during the three-month (three-year) period to
include a firm’s beta in the calculation for gLC3 (gLC36),
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Table II contains our main results on the performance of beta-sorted port-
folios. Case 1 confirms the significant underperformance of high-beta stocks
relative to the unconditional CAPM. With beta constrained to be constant,
the low-beta portfolio has an estimated beta of 0.47 compared to 2.02 for the
high-beta portfolio. The long-short beta portfolio has an unconditional alpha
of —0.59% per month (—7.08% per year), which is statistically significant at
the 5% level (t-statistic of —2.3).1% These results are consistent with findings
in prior literature that a betting-against-beta strategy generates abnormal re-
turns relative to the unconditional CAPM (e.g., Black, Jensen, and Scholes
(1972) and Frazzini and Pedersen (2014)).

Cases 2 to 8 consider alternative information sets in estimating conditional
CAPM alphas. Case 2 includes the three-month LC beta, fX¢3, which is a
positive predictor of beta with coefficients of about 0.6 for both portfolios. Using
this single instrument, the estimated difference in conditional CAPM alphas is
an insignificant —0.37% per month (¢-statistic of —1.5). A test for improvements
in the long-short alpha from conditioning indicates that the conditional alpha is
significantly greater than its unconditional counterpart with a p-value of 0.021.
When indicators for the third quarter are included in case 3, the model tends
to put more weight on past beta during the first, second, and fourth quarters,
whereas lagged beta has a more muted impact during the third quarter as
expected.'® The conditional alpha is —0.28% per month (¢-statistic of —1.1) in
this case, and the difference in unconditional and conditional alphas is strongly
statistically significant with a p-value of 0.011. Instrumenting for portfolio
betas using only recent short-term betas thus reduces the magnitude of the
estimated CAPM alpha by more than half relative to case 1.

Cases 4 and 5 introduce the 36-month LC beta, fX¢36. This variable sig-
nificantly forecasts the low-beta portfolio beta with a coefficient of 0.86 and
reduces the coefficient estimate for 4¢3 to 0.33 in case 4, but has little impact
on the high-beta portfolio. The coefficients on the short-term and long-term
lagged beta instruments suggest that market exposure for the low-beta portfo-
lio tends to be relatively more stable over time. Conditional alphas are similar
to cases 2 and 3, which exclude XC3%, with estimates of —0.39% and —0.30%
per month for the long-short beta portfolio.

Macroeconomic variables also have significant explanatory power for port-
folio betas. Case 6 includes the dividend yield and default spread as the sole
instruments. These variables have significant coefficients for both portfolios,
and the R%s for the portfolios in case 6 are similar to those for the specifications
including all lagged betas. The conditional alpha of the long-short beta port-
folio is —0.31% per month (z-statistic of —1.2), which is significantly greater
than the unconditional alpha in case 1 with a p-value of 0.011. Case 7 contains

15 We consider the performance of the low-beta, high-beta, and beta-spread portfolios for parsi-
mony. IV1 regression results for all 10 decile portfolios are available in the Internet Appendix.

16 The coefficients on I;gs; and I;gs) x BFC? are statistically insignificant for the IV1 estimation
in case 3. The Internet Appendix shows that these variables are highly significant predictors of beta
for the high-beta portfolio when betas are directly modeled in the first stage of the IV2 approach.
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lagged betas and macroeconomic variables as instruments for portfolio betas.
The macroeconomic variables maintain some significance for forecasting betas,
with the default spread in particular showing strong predictive ability, and the
coefficients on lagged betas remain positive but become statistically insignifi-
cant. The long-short alpha is —0.23% per month (¢-statistic of —0.9) using this
information set, and this conditional alpha is significantly greater than the
alpha from case 1 at the 1% significance level.

Finally, case 8 uses the full information set to model portfolio betas. After
including the third-quarter indicators, 8“3 is a significant predictor of the
high-beta portfolio beta at the 5% level, whereas the third-quarter interaction
term is significantly negative at the 10% level and nearly reduces the marginal
effect of BLC3 to zero in the third quarter. The macroeconomic variables also
continue to be important in modeling portfolio betas. Using the full information
set, the conditional alpha estimate for the long-short beta portfolio is —0.18%
per month (¢-statistic of —0.7), which is significantly greater than the uncon-
ditional alpha (p-value of 0.003). This point estimate for alpha represents a
nearly 70% reduction in magnitude relative to the unconditional model in case
1‘17,18

Overall, the results in Table II suggest that accounting for time variation
in portfolio risk explains much of the apparent underperformance of high-
beta stocks. The approximation in equation (1) indicates that inferences from
unconditional and conditional models may differ to the extent that portfolio
betas are systematically related to the market risk premium and/or market
volatility. In particular, the large negative unconditional alpha for the beta-
spread portfolio may be entirely consistent with the conditional CAPM if the
beta for this strategy covaries negatively with the expected market return or
positively with market volatility. Figure 2 presents preliminary evidence that
beta estimates for the long-short portfolio are correlated in the right direction
with both the market risk premium and the volatility of the market portfolio.

Table III reports direct estimates of the market timing and volatility timing
effects for the beta-sorted portfolios. Specifically, the difference in unconditional

17 The tests in Table II consider whether market risk is priced in the manner predicted by the
Sharpe-Lintner CAPM. Black (1972) develops an alternative version of the CAPM under borrowing
constraints. In Black’s CAPM, the expected return on a zero-beta asset may not be equal to the
risk-free rate, and we may expect to see low-beta stocks perform well relative to the predictions
of the Sharpe-Lintner CAPM. Even so, the —59 basis point difference in monthly performance
for high- and low-beta stocks implied by the unconditional CAPM is quite large from an economic
perspective. The —18 basis point difference in performance relative to the conditional CAPM seems
more plausibly explained by borrowing constraints.

18Tn the Internet Appendix, we investigate the robustness of our results in case 8 of Table
II to alternative portfolio formation rules. We specifically consider formation-period betas that
are estimated over a prior five-year period following Fama and French (1992) and Frazzini and
Pedersen (2014). Inferences are generally similar to our base results as the reductions in the
magnitude of alpha moving from the unconditional to conditional models are large and statistically
significant. Measured biases in unconditional alphas range from —0.18% to —0.23% per month
depending on the specification, though the strategies earn conditional alphas that are statistically
significant at the 10% level in some tests.
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and conditional alphas for a given portfolio can be decomposed into two terms
(e.g., Boguth et al. (2011)),

oin—aiIm:( 1_12 )Cov(ﬁl[‘fl,R ) If)_’:{COV(ﬁlell,R2 ) 9

m

where ﬂ{ ‘Tll is the conditional portfolio beta, R, . is the excess market return

for period 7, and Rm,, and a,% are the unconditional mean and variance of excess
market returns, respectively. The first term accounts for the effect of market
timing and the second term reﬂects the volatility timing effect. We estimate

the market timing effect as (1+ 2z 22 )Cov(B[T", Rp.), where B is the fitted

T
portfolio conditional beta from case 8 in Table II for quarter t, and Rmf and
62 are the unconditional average and variance of excess market returns. The

volatlhty timing effect is estimated as 2z Cov(B!V1 RZ2,)). Each effect is scaled

T
to be expressed in percentage per month

Table III presents estimates of the market timing and volatility timing ef-
fects for the low-beta, high-beta, and long-short portfolios. Exposure to market
risk for the long-short portfolio covaries negatively with the market risk pre-
mium, and this pattern in portfolio betas produces a bias in the unconditional
alpha estimate of —0.07% per month. Volatility timing has a larger effect on
unconditional alphas of —0.34% per month, and both the low-beta (—0.14%)
and high-beta (—0.20%) portfolios contribute to the negative bias in uncondi-
tional alphas. This effect is driven by a positive relation between the condi-
tional beta of the high-low beta portfolio and market volatility. Intuitively, the
volatility timing bias arises because returns in volatile periods tend to be more
influential observations in the unconditional CAPM regressions. If conditional
portfolio risk tends to be high in these volatile periods, the unconditional beta
estimate will typically overstate the average conditional portfolio beta. These
effects are observed for our beta-sorted portfolios, as the low-beta portfolio has
an unconditional beta estimate of 0.47 compared to an average conditional beta
of 0.68 and the high-beta portfolio has a larger unconditional beta of 2.02 com-
pared to the average conditional beta of 1.71. The unconditional CAPM thus
tends to overstate the average risk of a strategy that buys high-beta stocks and
sells low-beta stocks. The market timing and volatility timing effects combine
to produce the reported —0.41% per month difference between unconditional
and conditional performance for this portfolio in Table II.

To summarize and interpret our results to this point, we show that, even
though beta-sorted portfolios produce a relatively flat beta-return relation,
exposure to market risk is still rewarded in a manner consistent with the
conditional CAPM for these test assets. The high-minus-low beta portfolio’s ex-
posure to market risk exhibits not only considerable time-series variation but
also systematic relations with expected market returns and volatility. Given
these features of the data, the conditional CAPM implies a relatively low ex-
pected return for the long-short beta portfolio, which is consistent with the
observed weak relation between beta and average return. The unconditional
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performance estimates emphasized in prior studies, on the other hand, fail to
account for these systematic trends in factor exposures and lead to an incom-
plete assessment of the CAPM’s ability to price beta-sorted portfolios.

Table IV contains robustness results for our findings in Table II. We inves-
tigate three alternatives to our base specification. The table reports estimates
of alpha for the high-low beta portfolio under various information sets as well
as p-values for the differences between conditional and unconditional alphas.
The Internet Appendix contains full results with all parameter estimates for
these specifications. For comparison, we reproduce a summary of our results
from Table II in Panel A of Table IV.

Panel B presents alpha estimates from applying the IV2 approach discussed
in Section I.A. The conditional alpha estimates in cases 2 to 8 are generally
similar in magnitude to the corresponding one-step figures from Panel A. All of
these long-short conditional alpha estimates are insignificant at conventional
levels, and the null hypothesis of «1}}? < ¢, is rejected at the 5% level in each
case.

In Panel C of Table IV, we present a set of IV1 results based on monthly
portfolio returns for the high- and low-beta portfolios of interest. Although the
analysis presented in Section 1.B.2 suggests that slow information diffusion
among high-beta firms makes a quarterly return measurement interval more
appropriate for our empirical work, we would like to highlight the influence of
this choice relative to monthly returns, which are a popular alternative in the
literature. We estimate the model in equation (3) under alternative information
sets with the state variables updated on a monthly basis. The unconditional
alpha estimate of —0.59% per month in case 1 is nearly identical to the corre-
sponding estimate based on quarterly data in Panel A. Conditioning continues
to be important with monthly data, as each of the observed conditional alphas
in Panel C is significantly greater than the unconditional alpha. The condi-
tional alpha estimate of —0.30% in case 8 represents a reduction in magnitude
of abnormal performance of roughly 50% relative to the unconditional alpha.

Finally, Panel D presents IV1 results for test portfolios formed using break
points that are based on the formation-period betas for NYSE firms. This em-
pirical design leads to slightly more diversified portfolios for the high- and low-
beta groups, but the qualitative impact of conditioning information on portfolio
alpha estimates is nearly identical to the base case in Panel A.

B. Fama-French Model Alphas

In this section, we examine the performance of the Fama-French (1993)
three-factor model in explaining the average returns of the beta-sorted test
portfolios. The Fama-French model is popular in empirical work, and multi-
factor models are a common risk-based alternative to conditional models for
explaining CAPM anomalies. Further, Fama and French (1992) demonstrate
that the beta-return relation becomes even flatter after controlling for firm
size, and Fama and French (2006) extend this result to controlling for both
size and book-to-market. We thus investigate the impact of controlling for
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exposures to the size (R, .) and value (Ry,; ) factors of the Fama-French
model on inferences about the performance of the beta strategies. We also
explore the linkages between exposures to the additional factors and the con-
ditioning information that underlies our results in Section IL.A.

We examine both unconditional and conditional versions of the three-factor
model. This approach allows us to distinguish between the effects of adding
the size and value factors and those obtained by accounting for time variation
in risk exposures. Data on the daily and monthly Fama-French factor returns
are from Kenneth French’s website. We construct a quarterly version of each
factor return by compounding the monthly returns for the long and short sides
of the factor separately and then computing the difference. The IV1 estimation
is based on the following regression:

Ri:=o/" '+ Mo+ 12 1) Rue+ (6i0+ 612, 1) Robx
+ (0 + 112!, 1) Rinix + Uiz (10)

Table V presents the performance of the beta-sorted portfolios relative to the
Fama-French three-factor model. The unconditional Fama-French alpha for
the long-short portfolio in case 1 is —0.75% per month (¢-statistic of —3.0). This
performance estimate is significantly lower than the corresponding uncondi-
tional CAPM alpha of —0.59% from case 1 in Table II at the 10% level (p-value
of 0.080). The high-beta portfolio has larger loadings on R, . and Ry, . com-
pared to the low-beta portfolio (0.45 versus 0.04 for R,,;. and 0.31 versus
—0.12 for Ry,;..), so including these additional factors amplifies the measured
underperformance of high-beta stocks.

This result that the Fama-French model produces a larger negative alpha
on the high-minus-low portfolio after controlling for exposures to Ry, . and
Ry« is broadly consistent with, and complementary to, the results of Fama
and French (1992, 2006). In these studies, the beta-return relation becomes
flatter after controlling for firm size and book-to-market in portfolio sorts, and
a steeper negative pattern in CAPM alphas emerges across beta ranks. In
a similar vein, controlling for exposures to the size and value factors in the
Fama-French model amplifies the measured underperformance of high-beta
stocks. Because the Fama-French model results in case 1 deepen the uncondi-
tional beta anomaly, we next examine the effect of conditioning information on
measured portfolio performance.

The remaining three cases in Table V introduce instruments for factor load-
ings to estimate conditional versions of the Fama-French model. Case 2 in-
cludes three-month and 36-month LC betas for each of the three factors.!® The
estimated alpha in this case is —0.39%, which is significantly greater than the

19 These instruments are estimated analogously to the CAPM LC betas after incorporating the
two additional factors into equation (5). Given the similarity of results for specifications that include
or exclude third-quarter indicators and interactions, for parsimony we exclude these variables in
the remaining tests.
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alpha from case 1 (p-value of 0.008). The 36-month L.C betas appear to be use-
ful as instruments for modeling portfolio factor loadings, as all coefficients are
large, positive, and significant. Three-month betas, on the other hand, are only
significant at the 10% level for the high-beta portfolio’s market loading and
the low-beta portfolio’s loading on the value factor. Increased measurement
error in factor loadings for the multifactor model may explain the diminished
effect of betas estimated over short windows. Case 3 includes the dividend yield
and default spread as instruments. The conditional Fama-French alpha for the
high-low portfolio is —0.33%, which is less than half of the unconditional alpha
in magnitude. These standard instruments are significant in explaining sev-
eral loadings, and the regression R%s are as large as or larger than those from
case 2, suggesting that the macroeconomic variables are valuable instruments.

Case 4 includes the full set of conditioning information. The 36-month fac-
tor loading estimates remain important for modeling portfolio betas, and the
macroeconomic factors retain some predictive ability for portfolio betas, with
the strongest effects occurring for value factor loadings. The estimated long-
short alpha of —0.26% is marginally statistically significant (p-value of 0.095)
but represents a 65% reduction in the magnitude of alpha relative to case 1
(p-value 0of 0.004). The conditional Fama-French alpha of —0.26% is also statis-
tically indistinguishable from the corresponding CAPM alpha of —0.23% (.e.,
case 7 in Table II). Overall, we find that allowing for time variation in risk
exposures is important for evaluating the performance of beta-sorted portfolios
using the Fama-French model.

We can also decompose the bias in unconditional Fama-French alphas to see
which of the three factors drives the results. That is, the difference between
unconditional and conditional three-factor performance for a given portfolio
can be expressed as the sum of three terms:

alU —alvl — (Z BIVIR,. — BU ZT:Rm_r>

=1

T
(Z AIVqumb,r - §LU Z Rsmb,r)

=1
1 (& r
_ V1 _ 35U
+ T (;ﬁ” Ry - fLL Tél Rh,,,l’,>, (11)

where BY, 8V, and AV are the unconditional portfolio factor loadings on the
market, size, and value factors, and B/V?, 8!V, and A/V" are the fitted condi-
tional loadings (e.g., ,3{ Vi= Aio+ )‘i,l ”_1). Each of the three right-hand-side
terms in equation (11) corresponds to a single factor. Table VI provides the
results of this decomposition for the conditional alpha estimates in case 4 of
Table V. The unconditional alpha for the long-short portfolio is biased by —49
basis points per month. Time variation in the market factor loading for this
portfolio accounts for —41 basis points (84%) of this total. By comparison, the
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contributions of the size and value terms of 0 basis points (0%) and —8 basis
points (16%), respectively, are much less pronounced.

These results indicate that, even in a three-factor setup, the changing ex-
posures to market risk among high- and low-beta firms account for most of
the improvements obtained through conditioning. Given the nature of these
findings, in the remainder of the paper, we focus on market factor loadings in
a CAPM setting.

III. Determinants of Portfolio Betas

The prior section establishes that the previously documented poor perfor-
mance of high-beta firms relative to low-beta firms is attributable to a bias in
unconditional portfolio alphas. The relatively flat beta-return relation is simply
an artifact of systematic variation in portfolio betas in relation to the market
risk premium and market volatility. In this section, we attempt to identify the
economic drivers underlying the observed changes in CAPM betas for our test
assets. Our objective is to introduce and test a series of theoretically motivated
conditioning variables with predictive content for the market exposures of the
beta-sorted portfolios.

A. Portfolio Beta Decomposition

As a starting point, we introduce a simple decomposition to characterize
potential sources of variation in the conditional betas for our trading strategies.
The CAPM beta for a given portfolio can be expressed as the value-weighted
average of N, constituent firm betas in quarter t:

N,
B = Z wn,tﬁn,t’ (12)
n=1

where . is the beta and w, , is the portfolio weight for firm n in period .
Using a covariance decomposition on the right-hand side, the portfolio beta can
be expressed as

ﬂl’ = Bn.r + N‘[COV(wn,‘[, ﬂnﬁr), (13)

where B, . is the simple average of firm betas in period t and Cov(w,, ;, B,..) is
the covariance between betas and weights within the portfolio.

The decomposition in equation (13) implies that variation in market risk
for a given portfolio arises from changes in the average firm-level beta (i.e.,
the “beta distribution component,” B, .) or changes in the within-portfolio re-
lation between betas and portfolio weights (i.e., the “valuation component,”
N, Cov(wp, ¢, Bn.c)). Figure 1 demonstrates that the distribution of firm betas is
highly time varying, which will be reflected in the conditional market expo-
sures of the beta-sorted portfolios through the distribution term, B, .. Portfolio
betas depend on the relative weights of higher- and lower-beta constituent
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firms through the valuation term, N,Cov(w, ., B,.), and a positive correlation
between betas and weights will result in a conditional beta that exceeds the
simple average beta of the constituent firms.

We thus investigate several theoretically motivated channels that may pro-
duce time variation in portfolio betas through the beta distribution and val-
uation components. Section III.B outlines how valuation effects can generate
systematic changes in market exposure for beta-sorted portfolios, and Section
IT1.C considers several potential economic mechanisms underlying the distri-
bution effects in portfolio betas. Finally, Section III.D empirically examines
these explanations for time-series variation in portfolio betas using the IV
framework.

B. Valuation Effects for Portfolio Betas

The valuation component in equation (13) shows that a given portfolio’s beta
depends on the relation between the betas and weights of constituent firms. If
firm values evolve as the present value of future cash flows with discount rates
determined by the conditional CAPM, we would expect to observe systematic
variation in this component in relation to the market risk premium. In the In-
ternet Appendix, we introduce a model that formalizes these valuation-related
effects. The valuation level for each firm in the cross section of the model econ-
omy is higher when the market risk premium is low, but the largest impact
on valuations from a change in the market risk premium is felt by high-beta
firms. The weights of firms in the high-beta portfolio therefore fluctuate sys-
tematically over time in relation to the market risk premium, with higher beta
stocks receiving relatively larger weights during periods of low risk premiums.

The discussion above indicates that the market risk premium should be
negatively related to the conditional beta for the high-beta strategy. To capture
these valuation effects, we include the market risk premium as an instrument
for modeling conditional betas in Section III.D. Specifically, the market risk
premium is defined as the fitted value from the following regression of quarterly
excess market returns on lagged state variables:

Ry. =m0+ mDY. 1 +m2DS; 1 +m3TS; 1+ 7T B; 1+ v, (14)

where DY,_; and DS,_; are the dividend yield and default spread defined in
Section II, T'S,_; is the term spread, and T B, _; is the short-term risk-free
rate.?0 Table VII provides summary statistics for the market risk premium,
expressed in percentage per month, and the distribution-related state variables
introduced below. Details regarding the construction of each state variable are
available in the Internet Appendix.

20 The term spread is the difference between the 10-year and 1-year Treasury constant maturity
rates and the risk-free rate is the three-month Treasury bill yield. Data for these state variables
come from the Federal Reserve Bank of St. Louis website. The regression in equation (14) is
estimated from quarterly data over the period July 1930 to December 2012.
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Table VII
Summary Statistics for Explanatory Variables, July 1971 to
December 2012

The table reports summary statistics for the state variables used in characterizing the variation
in market risk for beta-sorted portfolios. Panel A presents the time-series mean and standard
deviation for the following variables: the fitted market risk premium (R,,), the number of IPOs in
the prior five years divided by the total number of sample firms (I PO), the cross-sectional standard
deviation of firm-level log book-to-market ratios (o), the cross-sectional standard deviation of
firm-level book leverage (o7gy), the cross-sectional average of firm-level idiosyncratic volatility
computed from daily returns over the prior 12 months (/V OL), and the standard deviation of daily
TED spread innovations over the prior three months (oa7gp). The fitted excess market return is
estimated from a regression of quarterly excess market returns on the log dividend yield (DY),
the default spread (DS), the term premium (7'S), and the short-term interest rate (7' B) using
data from the period July 1930 to December 2012. Panel B reports pairwise correlations for the
predictor variables. Each state variable is updated at a quarterly frequency.

Panel A: Distributional Statistics

R, IPO oBM OLEV IVOL OATED
Mean 0.429 0.172 0.886 0.319 3.360 0.126
Standard deviation 0.432 0.095 0.111 0.169 0.830 0.128

Panel B: Correlation Matrix

Rm IPO OBM OLEV IVOL OATED
R, 1.000
IPO —0.534 1.000
OCBM —0.081 0.516 1.000
CLEV —0.041 0.138 0.116 1.000
IVOL —0.180 0.665 0.701 0.043 1.000
GATED 0.188 —0.438 —0.336 —0.328 —0.389 1.000

C. Determinants of the Cross-Sectional Distribution of Betas

As outlined in Section III.A, an important determinant of market exposures
for beta-sorted portfolios is time variation in the dispersion of firm-level betas.
In Sections III.C.1 to II1.C.5, we propose characteristics of the cross section of
stocks that are likely to forecast these shifts in the beta distribution. We specif-
ically consider economic drivers related to initial public offering (IPO) activity,
heterogeneity in investment opportunities, heterogeneity in firm leverage, id-
iosyncratic risk levels, and economy-wide funding conditions. For each of these
five channels, we introduce a corresponding instrument and develop theoretical
predictions for its relation with portfolio betas.

C.1. Initial Public Offerings

Our first proposed explanation links shifts in the distribution of firm-level
betas to changes in the set of publicly traded firms. We argue that the intensity
of recent TPO activity should positively predict the market exposure of the
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high-low beta portfolio. We proxy for IPO activity using the number of IPOs in
the prior five years as a fraction of the total number of sample firms (IPO).
Our model developed in the Internet Appendix formalizes this prediction. This
model economy allows for the possibility of new entrants each period, and
each potential entrant undertakes an IPO if its price-dividend ratio exceeds
a threshold valuation ratio. Given that discount rates are determined by the
conditional CAPM in this model, high-beta firms experience the largest changes
in valuation given a shock to the market risk premium. As such, the IPO
decisions of high-beta stocks are highly procyclical. The model predicts that
IPO waves occur and more high-beta stocks undertake IPOs when the market
risk premium is low. The cross section thus absorbs more high-beta stocks and
beta dispersion increases when risk premiums are low.?! As a result, we expect
the cross-sectional dispersion in betas to be positively related to IPO.

C.2. Firm Investment

Investment opportunities can influence a firm’s exposure to systematic risk,
and we predict that greater heterogeneity in investment opportunities across
firms produces more cross-sectional dispersion in firm betas. The ratio of book
value of equity to market value of equity is a commonly used proxy for in-
vestment opportunities, so we empirically measure this heterogeneity using
the cross-sectional standard deviation of firm-level log book-to-market ratios
(oBu). High book-to-market can be a summary indicator that firm exposure to
systematic risk is high because existing assets are relatively high risk and low
value (Berk, Green, and Naik (1999), Gomes, Kogan, and Zhang (2003)) or be-
cause a firm has a high mix of existing assets relative to growth options (Berk,
Green, and Naik (1999)). Carlson, Fisher, and Giammarino (2004) show that
high book-to-market may also signal high operating leverage, which increases
exposure to systematic risk. In the presence of additional investment frictions
such as costly adjustment, high book-to-market firms can have higher expo-
sures to systematic risk because they cannot easily scale back on operations
in bad times (Zhang (2005)) and can use their excess capacity to capitalize on
positive economic shocks (Cooper (2006)). Based on the implications of these
models, we expect the distribution of firm betas to be more disperse when oy,
is high.

C.3. Leverage

Firm leverage also impacts equity betas through several mechanisms. We
expect that the cross-sectional standard deviation of firm-level book lever-
age (orgv) is positively related to the dispersion in betas across firms. Un-
der the assumption that capital structure does not affect investment or firm

21 Qur model implications with respect to the timing and risk of IPOs are comparable to those
of Pastor and Veronesi (2005), who develop a model that produces IPO volumes that vary based
on expected market returns, expected aggregate profitability, and uncertainty about IPO firm
profitability.
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risk, equity beta is increasing in leverage in a Modigliani-Miller (1958) frame-
work (Hamada (1972) and Rubinstein (1973)) or when equity is viewed as an
option-like claim on the value of the firm (Galai and Masulis (1976)). Further,
O’Doherty (2012) demonstrates that equity betas of levered firms decrease in
an option pricing framework when unpriced information risk rises. Finally,
Garlappi and Yan (2011) show that beta may have a hump-shaped relation
with leverage if shareholders can strategically renegotiate debt contracts in
times of distress.

The endogeneity of the capital structure decision can also impact the observed
relation between beta and leverage. George and Hwang (2010) argue that firms
with high systematic risk exposure may optimally choose lower leverage in the
presence of distress costs. Further, joint financing and investment decisions
could reinforce a positive beta-leverage relation, as leverage reduces the flexi-
bility of financially constrained firms (Livdan, Sapriza, and Zhang (2009)), or
produce a negative relation between beta and leverage, if debt is used to finance
investments that lower the firm’s asset beta (Gomes and Schmid (2010), Choi
(2013)). To the extent firm leverage affects beta, the cross-sectional distribution
of betas may be more disperse when o7 gy is large.

C.4. Idiosyncratic Risk

Several studies show that, although idiosyncratic risk is unpriced under the
CAPM, a stock’s beta can be influenced by firm-specific shocks. Based on the
theoretical literature, we predict that the cross-sectional average of firm-level
idiosyncratic volatility (IV OL) is positively related to the systematic risk of
the high-low beta portfolio. Brennan (1973), Bossaerts and Green (1989), and
Babenko, Boguth, and Tserlukevich (2015) develop frameworks in which past
idiosyncratic cash flow shocks affect a firm’s current exposure to systematic
risk. Intuitively, firms may have multiple components that are relatively more
exposed to firm-specific or systematic risks. A positive (negative) idiosyncratic
shock increases the importance of the idiosyncratic (systematic) component of
firm value, leading to a decrease (increase) in firm beta. Babenko, Boguth,
and Tserlukevich (2015) show that this result holds except in the special case
in which the systematic and idiosyncratic components of cash flow risk are
multiplicative. Thus, beta dispersion should be positively related to IV OL,
given that larger firm-specific shocks have a greater impact on beta.

C.5. Funding Liquidity Conditions

Our final proposed driver of changes in the beta distribution is based on
economy-wide funding liquidity. Following Frazzini and Pedersen (2014), we
measure aggregate funding conditions as the standard deviation of daily
Treasury-Eurodollar (TED) spread innovations (oa7gp). Frazzini and Peder-
sen (2014) consider a setting with constraints on investors’ ability to borrow
in the spirit of Black (1972). They derive equilibrium relations in a dynamic
economy in which funding liquidity conditions vary over time. These shifts in
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funding liquidity produce time-series variation in the cross-sectional distribu-
tion of betas, as an increase (decrease) in the mutual exposure of all firms to
these shocks produces a more compressed (diffuse) cross-sectional distribution
of betas. From this model, the cross-sectional dispersion of betas should be
negatively related to oa7gp.

D. Empirical Tests of Beta Determinants

We now empirically investigate the proposed explanations from Sections
III.B and III.C for time variation in portfolio betas. Each state variable
introduced above is available at a quarterly frequency over the period July
1971 to December 2012. We evaluate the abilities of the theory-based state
variables to explain variation in portfolio betas over this period. We also
relate the variables to the beta distribution and valuation components of
portfolio betas in equation (13) to investigate the channels through which
these predictors are related to portfolio betas. Finally, we use the theoretically
motivated state variables to test the conditional CAPM in an IV framework.

In Table VIII, we regress conditional portfolio betas as well as their valuation
and beta distribution components on each of the state variables. The conditional
beta regressions follow equation (7) and use contemporaneous portfolio betas,
B., estimated from daily data during quarter r. The average beta component
is the simple average of firm-level betas for constituent firms in quarter t
(i.e., N% > .1 Bn:), and the valuation component is the difference between the
conditional beta estimate and the average beta component. The coefficient
estimates for the beta distribution and valuation components sum to equal
the coefficient for the portfolio beta, so this approach also serves to decompose
the overall effect of a given state variable on portfolio beta into its effects
on the two components. Based on theoretical predictions in Section III.B, we
expect R, to have a negative impact on portfolio betas, particularly for the
high-beta portfolio, with the effect working through the valuation component.
The five explanations from Section III.C, in contrast, are expected to work
primarily through the beta distribution channel. The IPO, oy, orLgv, and
IV OL variables should be positively (negatively) associated with the beta of
the high-beta (low-beta) portfolio, whereas o7 gp is expected to have a negative
(positive) relation with the high-beta (low-beta) portfolio beta.

Panel A of Table VIII contains univariate regression results for the high-
beta portfolio. All six state variables show significant predictive ability for the
beta of this portfolio in the theoretically predicted direction with regression
R?s ranging from 2.8% (oa7£p) to 10.0% (IV OL). Further, the fitted market
risk premium primarily affects the portfolio beta by forecasting the valuation
component (coefficient of —0.21 compared to the total effect of —0.32), which
is consistent with predictions. The beta distribution variables oy, orrv, and
IV OL also largely affect the portfolio beta through the predicted channel of
average beta. The IPO state variable, on the other hand, is more closely re-
lated to the valuation component compared to the average beta component. As
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Table VIII
Beta Component Regressions, July 1971 to December 2012

The table reports results from univariate time-series regressions of portfolio betas and components
of portfolio betas on lagged state variables. Panel A (Panel B) presents results for the high-beta
(low-beta) decile. The portfolio beta regressions are given by B; ; = 8i,0 +8; 1Z; -1 +ei ., where Bix
is the contemporaneous portfolio beta estimated from daily portfolio excess returns during quarter
7. The instruments Z; ;_; include the fitted market risk premium (R, the number of IPOs in the
prior five years divided by the total number of sample firms (I PO), the cross-sectional standard
deviation of firm-level log book-to-market ratios (opps), the cross-sectional standard deviation of
firm-level book leverage (o7gy ), the cross-sectional average of firm-level idiosyncratic volatility
computed from daily returns over the prior 12 months (/VOL), and the standard deviation of
daily TED spread innovations over the prior three months (oa7gp). The fitted excess market
return is estimated from a regression of quarterly excess market returns on the log dividend
yield (DY), the default spread (DS), the term premium (7'S), and the short-term interest rate
(T B) using data from the period July 1930 to December 2012. The average beta component for
a given portfolio, B, ., is the equally weighted average of firm-level betas for constituent firms
during quarter 7. The valuation component, N; Cov(w, ;, B,.1), for a given portfolio is the difference
between the corresponding contemporaneous portfolio beta and the average beta component. For
each regression, the table reports an adjusted R? value (R2), and the numbers in parentheses are
t-statistics. The coefficient on the intercept is not reported.

Average Beta Valuation
Portfolio Beta Component Component
B ﬂn,r NTCOV(wn,Is ,Bn,r)
State = +
Case Variable 81 R2 81 R2 81 R2
Panel A: Regressions for High-Beta Portfolio
1 R, -0.32 7.8 -0.11 0.3 -0.21 5.0
(—3.86) (-1.19) (-3.11)
2 IPO 1.59 9.5 0.39 -0.1 1.20 8.5
(4.28) (0.92) (4.05)
3 oOBM 1.40 9.9 1.13 5.1 0.27 0.0
(4.37) (3.14) (1.01)
4 OLEV 0.69 5.3 0.61 3.2 0.08 -0.5
(3.19) (2.55) (0.45)
5 IVOL 0.19 10.0 0.11 2.7 0.07 2.0
(4.40) (2.35) (2.08)
6 OATED -0.75 2.8 -0.51 0.7 —0.24 -0.1
(—2.41) (—-1.49) (—0.95)
Panel B: Regressions for Low-Beta Portfolio
1 R, 0.01 -0.6 -0.03 -0.2 0.04 0.0
(0.24) (—0.82) (0.96)
2 IPO -0.17 -0.3 0.12 -0.3 -0.29 0.6
(=0.71) (0.69) (—=1.40)
3 oBM —0.36 14 -0.18 0.3 -0.18 0.0
(-1.81) (-1.22) (-1.03)
4 OLEV 0.14 0.0 0.09 -0.1 0.05 -0.5
(1.03) (0.93) (0.39)
5 IVOL —0.04 1.0 -0.01 -0.6 -0.04 1.0
(—-1.64) (—0.30) (-1.62)
6 OATED -0.05 -0.6 -0.15 0.1 0.10 -04




770 The Journal of Finance®

discussed in Section III.C.1, TPO decisions of firms may be related to overall
valuation levels, which could explain this effect. Finally, oao7gp is not a signifi-
cant predictor of either component individually but is negatively related to the
portfolio beta as expected.

Table VIII, Panel B, presents results from regressing the low-beta portfolio
beta and its components on the state variables. The op), variable is signifi-
cantly negatively related to the beta of this portfolio at the 10% level. All other
coefficients are insignificant, and the regression R?s are 1.4% or below. These
results suggest that the proposed state variables are generally less informative
in characterizing the dynamics of the low-beta strategy.

We now investigate the theory-based variables in an IV setting. The purpose
of this analysis is twofold. First, although Table VIII contains univariate tests
of the relations between portfolio betas and the state variables, we investigate
a multivariate model using the IV2 method to distinguish different theoreti-
cal explanations. Second, the IV framework allows us to examine the extent
to which the conditioning variables are associated with systematic trends in
conditional betas that ultimately impact measured portfolio performance.

Table IX presents IV2 results over the July 1971 to December 2012 sample
period covered by the state variables. Case 1 corresponds to the unconditional
CAPM. The estimated unconditional alpha for the high-low portfolio over the
sample period is —0.60% per month, which is significant at the 10% level. The
six theory-based instruments are included in case 2. The Rm, oBM, OLEV, and
IV OL state variables all have significant predictive ability for the beta of the
high-beta portfolio, and each of these four coefficients has the predicted sign.
The IPO and oargp variables are insignificantly related to beta after control-
ling for the additional instruments. The first-stage regression R? is 20.0% for
the high-beta portfolio, indicating that the state variables are capturing a sub-
stantial proportion of the time variation in the portfolio beta. In contrast, none
of the variables are significantly related to the beta of the low-beta portfolio,
and the adjusted R? of the first-stage beta regression is —0.3%. The estimated
alpha for case 2 is insignificant at —0.39%, which indicates that the theory-
based instruments are capturing systematic variation in portfolio betas.

Case 3 in Table IX includes the short-term and long-term LC betas as addi-
tional instruments. The R,, and IV OL instruments retain significance for the
high-beta portfolio after including the 823 and BXC3% variables. We interpret
the coefficient estimates for the instruments with some caution after including
LC betas, however, as these empirically motivated variables may be influenced
by the underlying theory-based instruments. The first-stage R2s for the high-
beta and low-beta portfolios increase substantially after adding g2¢3 and gL¢3¢,
which likely suggests that additional determinants of portfolio betas exist. Fi-
nally, the conditional alpha estimate is —0.33%, which is significantly larger
than the unconditional alpha at the 10% significance level.

Overall, the results in this section provide support for several of the pro-
posed theoretical determinants of portfolio betas. The market risk premium
negatively impacts the beta of the high-beta portfolio through the predicted
valuation channel. In contrast, cross-sectional patterns in firm investment
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opportunities, leverage, and idiosyncratic risk positively forecast the high-beta
portfolio beta due to their effects on the distribution of firm betas. The evidence
also suggests that these factors produce much of the systematic variation in
portfolio betas underlying the apparent underperformance of high-beta stocks
found in prior literature.

IV. Conclusion

Our analysis suggests that the historical record of success for betting-against-
beta strategies should be viewed with caution. In particular, the statistically
significant differences in risk-adjusted performance for high-beta and low-beta
portfolios found in prior studies are largely attributable to biases in uncon-
ditional performance measures. We show that the differences in conditional
alphas across beta portfolios are substantially smaller in economic magnitude
and are statistically insignificant. The key innovation is properly accounting
for predictable time-series variation in market exposure for the strategies of
interest.

We further establish that these results are an artifact of two complemen-
tary effects: (i) systematic trends in the association between market weights
and firm-level betas and (ii) time-varying dispersion in the beta distribution.
The first effect is largely mechanical. In a CAPM economy, the market weights
of high-beta stocks will decline in response to a positive shock to the equity
premium. These systematic valuation adjustments are then reflected in the
conditional risk of beta-sorted trading strategies. We also find support for theo-
retical drivers of the second effect. In particular, we link changes in investment
opportunities, leverage, and idiosyncratic risk to shifts in the cross-sectional
distribution of firm-level betas.

Initial submission: April 23, 2013; Final version received: May 5, 2015
Editor: Kenneth Singleton
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